Spacetime structures of continuous-time quantum walks.

نویسندگان

  • Oliver Mülken
  • Alexander Blumen
چکیده

The propagation by continuous-time quantum walks (CTQWs) on one-dimensional lattices shows structures in the transition probabilities between different sites reminiscent of quantum carpets. For a system with periodic boundary conditions, we calculate the transition probabilities for a CTQW by diagonalizing the transfer matrix and by a Bloch function ansatz. Remarkably, the results obtained for the Bloch function ansatz can be related to results from (discrete) generalized coined quantum walks. Furthermore, we show that here the first revival time turns out to be larger than for quantum carpets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum walks as massless Dirac fermions in curved space-time

A particular family of timeand space-dependent discrete-time quantum walks (QWs) is considered in onedimensional physical space. The continuous limit of these walks is defined through a procedure discussed here and computed in full detail. In this limit, the walks coincide with the propagation of a massless Dirac fermion in an arbitrary gravitational field. A QW mimicking the radial propagation...

متن کامل

Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory

We analyze continuous-time quantum and classical random walk on spidernet lattices. In the framework of Stieltjes transform, we obtain density of states, which is an efficiency measure for the performance of classical and quantum mechanical transport processes on graphs, and calculate the spacetime transition probabilities between two vertices of the lattice. Then we analytically show that ther...

متن کامل

Quantum Walks

Quantum walks can be considered as a generalized version of the classical random walk. There are two classes of quantum walks, that is, the discrete-time (or coined) and the continuous-time quantum walks. This manuscript treats the discrete case in Part I and continuous case in Part II, respectively. Most of the contents are based on our results. Furthermore, papers on quantum walks are listed ...

متن کامل

Quantum Walks on the Hypercube

Recently, it has been shown that one-dimensional quantum walks can mix more quickly than classical random walks, suggesting that quantum Monte Carlo algorithms can outperform their classical counterparts. We study two quantum walks on the n-dimensional hypercube, one in discrete time and one in continuous time. In both cases we show that the quantum walk mixes in (π/4)n steps, faster than the Θ...

متن کامل

Continuous-Time Quantum Walks on the Symmetric Group

In this paper we study continuous-time quantum walks on Cayley graphs of the symmetric group, and prove various facts concerning such walks that demonstrate significant differences from their classical analogues. In particular, we show that for several natural choices for generating sets, these quantum walks do not have uniform limiting distributions, and are effectively blind to large areas of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 3 Pt 2A  شماره 

صفحات  -

تاریخ انتشار 2005