Evaluation of EIT system performance.

نویسندگان

  • Mamatjan Yasin
  • Stephan Böhm
  • Pascal O Gaggero
  • Andy Adler
چکیده

An electrical impedance tomography (EIT) system images internal conductivity from surface electrical stimulation and measurement. Such systems necessarily comprise multiple design choices from cables and hardware design to calibration and image reconstruction. In order to compare EIT systems and study the consequences of changes in system performance, this paper describes a systematic approach to evaluate the performance of the EIT systems. The system to be tested is connected to a saline phantom in which calibrated contrasting test objects are systematically positioned using a position controller. A set of evaluation parameters are proposed which characterize (i) data and image noise, (ii) data accuracy, (iii) detectability of single contrasts and distinguishability of multiple contrasts, and (iv) accuracy of reconstructed image (amplitude, resolution, position and ringing). Using this approach, we evaluate three different EIT systems and illustrate the use of these tools to evaluate and compare performance. In order to facilitate the use of this approach, all details of the phantom, test objects and position controller design are made publicly available including the source code of the evaluation and reporting software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Number of Wideband Radio Sources

In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...

متن کامل

A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors

Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to t...

متن کامل

Quantum study of information delay in electromagetically induced transparency

Using electromagnetically induced transparency (EIT), it is possible to delay and store light in atomic ensembles. Theoretical modelling and recent experiments have suggested that the EIT storage mechanism can be used as a memory for quantum information. We present experiments that quantify the noise performance of an EIT system for conjugate amplitude and phase quadratures. It is shown that ou...

متن کامل

Quantum study of information delay in electromagnetically induced transparency.

Using electromagnetically induced transparency (EIT), it is possible to delay and store light in atomic ensembles. Theoretical modeling and recent experiments have suggested that the EIT storage mechanism can be used as a memory for quantum information. We present experiments that quantify the noise performance of an EIT system for conjugate amplitude and phase quadratures. It is shown that our...

متن کامل

Evaluation of the use of gold nanoparticle as contrast agent in electrical impedance imaging

Introduction: Electrical Impedance Tomography (EIT) is a real time and minimal invasive imaging modality for detection of lesions in tissues even when their structures show no changes. Early detection of lesion with EIT depends on difference between electrical impedance of targeted tissue and its surroundings. Therefore, finding a contrast agent for EIT that increase this diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2011