A ug 2 01 4 A POLYNOMIAL INVARIANT AND DUALITY FOR TRIANGULATIONS

نویسنده

  • DAVID RENARDY
چکیده

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G , TG(X,Y ) = TG∗(Y,X) where G∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial complexes. Polynomial duality for triangulations of a sphere follows as a consequence of Alexander duality. The main goal of this paper is to introduce and begin the study of a more general 4-variable polynomial for triangulations and handle decompositions of orientable manifolds. Polynomial duality in this case is a consequence of Poincaré duality on manifolds. In dimension 2 these invariants specialize to the well-known polynomial invariants of ribbon graphs defined by B. Bollobás and O. Riordan. Examples and specific evaluations of the polynomials are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polynomial Invariant and Duality for Triangulations

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G, TG(X,Y ) = TG∗(Y,X) where G ∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...

متن کامل

A ug 2 00 7 The D 4 R 4 term in type IIB string theory on T 2 and U – duality

We propose a manifestly U–duality invariant modular form for the D4R4 interaction in type IIB string theory compactified on T 2. It receives perturbative contributions upto two loops, and non–perturbative contributions from D–instantons and (p, q) string instantons wrapping T 2. We provide evidence for this modular form by showing that the coefficients at tree level and at one loop precisely ma...

متن کامل

ar X iv : 0 90 3 . 53 12 v 2 [ m at h . C O ] 1 1 M ay 2 00 9 GRAPHS , LINKS , AND DUALITY ON SURFACES

We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Poincaré duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where Tutte polynomial is known as the partition function of the Pott...

متن کامل

ar X iv : 0 90 3 . 53 12 v 1 [ m at h . C O ] 3 1 M ar 2 00 9 GRAPHS , LINKS , AND DUALITY ON SURFACES

We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Poincaré duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where Tutte polynomial is known as the partition function of the Pott...

متن کامل

Graphs, Links, and Duality on Surfaces

We introduce a polynomial invariant of graphs on surfaces, PG , generalizing the classical Tutte polynomial. Topological duality on surfaces gives rise to a natural duality result for PG , analogous to the duality for the Tutte polynomial of planar graphs. This property is important from the perspective of statistical mechanics, where the Tutte polynomial is known as the partition function of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014