Recent advances on kinetic analysis of electromigration enhanced intermetallic growth and damage formation in Pb-free solder joints
نویسندگان
چکیده
A comprehensive kinetic analysis was established to investigate the electromigration (EM) enhanced intermetallic compound (IMC) growth and void formation for Sn-based Pb-free solder joints with Cu under bump metallization (UBM). The kinetic model takes into account Cu–Sn interdiffusion and current stressing. Derivation of the diffusion coefficients and the effective charge numbers for the intermetallic compounds is an essential but challenging task for the study of this multi-phase multi-component intermetallic system. A new approach was developed to simultaneously derive atomic diffusivities and effective charge numbers based on simulated annealing (SA) in conjunction with the kinetic model. A consistent set of parameters were obtained, which provided important insight into the diffusion behaviors driving the IMC growth. The parameters were used in a finite difference model to numerically solve the IMC growth problem and the result accurately correlated with the experiment. EM reliability test revealed that the ultimate failure of the solder joints was caused by extensive void formation and subsequent crack propagation at the intermetallic interface. This damage formation mechanism was analyzed by first considering vacancy transport under current stressing. This was followed by a finite element analysis on the crack driving force induced by void formation. This paper is concluded with a future perspective on applying the kinetic analysis and damage mechanism developed to investigate the structural reliability of the through-Si-via in 3D interconnects. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Electromigration enhanced intermetallic growth and void formation in Pb-free solder joints
A kinetic analysis was formulated for electromigration enhanced intermetallic evolution of a Cu–Sn diffusion couple in the Sn-based Pb-free solder joints with Cu under bump metallurgy. The simulated diffusion couple comprised the two terminal phases, Cu and Sn, as well as the two intermetallic phases, Cu3Sn and Cu6Sn5, formed between them. The diffusion and electromigration parameters were obta...
متن کاملMechanism of electromigration-induced failure in the 97Pb–3Sn and 37Pb–63Sn composite solder joints
The electromigration-induced failure in the composite solder joints consisting of 97Pb–3Sn on the chip side and 37Pb–63Sn on the substrate side was studied. The under-bump metallization ~UBM! on the chip side was 5 mm thick electroplated Cu coated on sputtered TiW/Cu and on the substrate side was electroless Ni/Au. It was observed that failure occurred in joints in a downward electron flow ~fro...
متن کاملEffect of Grain Orientation on Electromigration in Sn-0.7Cu Solder Joints
smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This presentation reviews electromigra...
متن کاملElectromigration Performance of Wlcsp Solder Joints
Wafer Level Chip Scale Package (WLCSP) assemblies were tested under high temperature and high current conditions. Electromigration damage was observed along with accelerated diffusion and intermetallic compound growth at the solder / Under Bump Metallization (UBM) interface. Final electrical failure typically occurred due to a void created in the redistribution line (RDL) near the UBM. The fail...
متن کاملThermal Fatigue Assessment of Lead-Free Solder Joints
In this paper the authors have investigated the thermal fatigue reliability of lead-free solder joints. They have focused their attention to the formation of the intermetallic compound and its effect on the initiation and propagation behaviors of fatigue cracks. Furthermore, they also studied the effect of voids in the solder joints on the fatigue reliability. An isothermal fatigue test method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 49 شماره
صفحات -
تاریخ انتشار 2009