On the Generalized Drazin Inverse and Generalized Resolvent
نویسندگان
چکیده
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in C∗-algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel. Also, 2 × 2 operator matrices are considered. As corollaries, we get some well-known results.
منابع مشابه
Generalized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملAnalytic Perturbation of Generalized Inverses
We investigate the analytic perturbation of generalized inverses. Firstly we analyze the analytic perturbation of the Drazin generalized inverse (also known as reduced resolvent in operator theory). Our approach is based on spectral theory of linear operators as well as on a new notion of group reduced resolvent. It allows us to treat regular and singular perturbations in a unified framework. W...
متن کاملContinuity and General Perturbation of the Drazin Inverse for Closed Linear Operators
In this paper, we investigate a perturbation of the Drazin inverse AD of a closed linear operator A; the main tool for obtaining the estimates is the gap between subspaces and operators. By (X) we denote the set of all closed linear operators acting on a linear subspace of X to X , where X is a complex Banach space. We write (A), (A), (A), ρ(A), σ(A), and R(λ,A) for the domain, nullspace, range...
متن کاملPerturbation Analysis of Reduced Resolvents and Generalized Inverses
We investigate analytic perturbations of the reduced resolvent of a nite-dimensional linear operator (also known as Drazin inverse in the linear algebra literature). Our approach is based on spectral theory of linear operators as well as on a new notion of group reduced resolvent. It allows to treat regular and singular perturbations in a uniied framework. We provide an algorithm for computing ...
متن کاملFormulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz–Schur forms
We introduce new expressions for the generalized Drazin inverse of a block matrix with the generalized Schur complement being generalized Drazin invertible in a Banach algebra under some conditions. We generalized some recent results for Drazin inverse and group inverse of complex matrices.
متن کامل