Autodisplay: functional display of active beta-lactamase on the surface of Escherichia coli by the AIDA-I autotransporter.
نویسندگان
چکیده
Members of the protein family of immunoglobulin A1 protease-like autotransporters comprise multidomain precursors consisting of a C-terminal autotransporter domain that promotes the translocation of N-terminally attached passenger domains across the cell envelopes of gram-negative bacteria. Several autotransporter domains have recently been shown to efficiently promote the export of heterologous passenger domains, opening up an effective tool for surface display of heterologous proteins. Here we report on the autotransporter domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I), which was genetically fused to the C terminus of the periplasmic enzyme beta-lactamase, leading to efficient expression of the fusion protein in E. coli. The beta-lactamase moiety of the fusion protein was presented on the bacterial surface in a stable manner, and the surface-located beta-lactamase was shown to be enzymatically active. Enzymatic activity was completely removed by protease treatment, indicating that surface display of beta-lactamase was almost quantitative. The periplasmic domain of the outer membrane protein OmpA was not affected by externally added proteases, demonstrating that the outer membranes of E. coli cells expressing the beta-lactamase AIDA-I fusion protein remained physiologically intact.
منابع مشابه
Functional Surface Display of Laccase in a Phenol-Inducible Bacterial Circuit for Bioremediation Purposes
Background: Phenolic compounds, which are produced routinely by industrial and urban activities, possess dangers to live organisms and environment. Laccases are oxidoreductase enzymes with the ability of remediating a wide variety of phenolic compounds to more benign molecules. The purpose of the present research is surface display of a laccase enzyme with adhesin involved in diffuse adhesion (...
متن کاملThe autodisplay story, from discovery to biotechnical and biomedical applications.
Among the pathways used by gram-negative bacteria for protein secretion, the autotransporter pathway represents a solution of impressive simplicity. Proteins are transported, independent of their nature as recombinant or native passengers, as long as the coding nucleotide sequence is inserted in frame between those of an N-terminal signal peptide and a C-terminal domain, referred to as the beta...
متن کاملCharacterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions.
The current model for autodisplay suggests a mechanism that allows a passenger protein to be translocated across the outer membrane by coordinate action of a C-terminal beta-barrel and its preceding linking region. The passenger protein, linker, and beta-barrel are together termed the autotransporter, while the linker and beta-barrel are here referred to as the translocation unit (TU). We chara...
متن کاملAutodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli.
The immunoglobulin A protease family of secreted proteins are derived from self-translocating polyprotein precursors which contain C-terminal domains promoting the translocation of the N-terminally attached passenger domains across gram-negative bacterial outer membranes. Computer predictions identified the C-terminal domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I)...
متن کاملAutodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 182 13 شماره
صفحات -
تاریخ انتشار 2000