Lebesgue measure in the infinite - dimensional space ?

نویسنده

  • A. M. Vershik
چکیده

We consider the sigma-finite measures in the space of vector-valued distributions on the manifold X with characteristic functional

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Radon-gauss Transform

Gaussian measure is constructed for any given hyperplane in an infinite dimensional Hilbert space, and this is used to define a generalization of the Radon transform to the infinite dimensional setting, using Gauss measure instead of Lebesgue measure. An inversion formula is obtained and a support theorem proved.

متن کامل

Math 7770: Analysis and Probability on Infinite-Dimensional Spaces

• Rn has a natural measure space structure; namely, Lebesgue measure m on the Borel σalgebra. The most important property of Lebesgue measure is that it is invariant under translation. This leads to nice interactions between differentiation and integration, such as integration by parts, and it gives nice functional-analytic properties to differentiation operators: for instance, the Laplacian ∆ ...

متن کامل

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Does there exist the Lebesgue measure in the infinite - dimensional space ?

We consider the sigma-finite measures in the space of vector-valued distributions on the manifold X with characteristic functional

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008