Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation.

نویسندگان

  • Jared C Lewis
  • Robert G Bergman
  • Jonathan A Ellman
چکیده

[Reaction: see text]. Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh- N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy 3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy 3) 2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy 3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C-H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-Catalyzed Arylation of Heterocycles via Directed C–H Bond Activation

The iron-catalyzed arylation of aromatic heterocycles, such as pyridines, thiophenes, and furans, has been achieved. The use of an imine directing group allowed for the ortho functionalization of these heterocycles with complete conversion in 15 min at 0 °C. Yields up to 88% were observed in the synthesis of 15 heterocyclic biaryls.

متن کامل

Construction of nitrogen-containing heterocycles by C-H bond functionalization.

Nitrogen heterocycles are abundant in natural products and pharmaceuticals. An emerging interest among synthetic chemists is to use C-H functionalization to construct the nitrogen-containing core of these heterocycles. The following article will provide a brief overview of this concept with respect to the type of C-H bond functionalized.

متن کامل

Copper-catalyzed direct thiolation of azoles with aliphatic thiols.

Cu(II)-catalyzed direct thiolation of azoles with thiols is described via intermolecular C-S bond formation/C-H functionalization under oxidative conditions. Both aryl thiols and aliphatic thiols are used as coupling partners, and furnished the thiolation products in moderate to good yields. The reaction is compatible with a wide range of heterocycles including oxazole, thiazole, imidazole and ...

متن کامل

Synthesis of Saturated Five-Membered Nitrogen Heterocycles via Pd-Catalyzed C N Bond-Forming Reactions

Saturated five-membered nitrogen heterocycles, such as pyrrolidines, indolines, and isoxazolidines, appear as subunits in a broad array of biologically active and medicinally significant molecules [1]. As such, the synthesis of these compounds has been of longstanding interest. Many classical approaches to the construction of these heterocycles involve the use of C N bond-forming reactions such...

متن کامل

Rhodium-catalyzed olefination of aryl tetrazoles via direct C-H bond activation.

Rh(III)-catalyzed direct olefination reaction via aromatic C-H bond activation is described using tetrazole as the directing group. This reaction provides a straightforward way for the synthesis of ortho-alkenyl aryl tetrazoles. Various functional groups tolerate the reaction conditions and afford the corresponding products in moderate to excellent yields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2008