Universal Derived Equivalences of Posets of Cluster Tilting Objects

نویسنده

  • SEFI LADKANI
چکیده

We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their cluster tilting objects are related by a simple combinatorial construction, which we call a flip-flop. We deduce that the posets of cluster tilting objects of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent. In particular, all Cambrian lattices corresponding to the various orientations of the same Dynkin diagram are universally derived equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Derived Equivalences of Posets of Tilting Modules

We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their tilting modules are related by a simple combinatorial construction, which we call flip-flop. We deduce that the posets of tilting modules of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent.

متن کامل

AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES

In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.

متن کامل

Equivalences between cluster categories

Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...

متن کامل

Tilting Theory for Coherent Rings and Almost Hereditary Noetherian Rings

We generalize two major ways of obtaining derived equivalences, the tilting process by Happel, Reiten and Smalø and Happel’s Tilting Theorem, to the setting of finitely presented modules over right coherent rings. Moreover, we extend the characterization of quasi–tilted artin algebras as the almost hereditary ones to all right noetherian rings. We also give a streamlined and general presentatio...

متن کامل

ar X iv : m at h / 05 11 38 2 v 2 [ m at h . R T ] 1 9 Ju n 20 06 Equivalences between cluster categories ∗

Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. Some of them are already proved for hereditary abelian categories there. In the present paper, all basic results about tilting theory are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008