UNN: A Neural Network for Uncertain Data Classification

نویسندگان

  • Jiaqi Ge
  • Yuni Xia
  • Chandima H. Nadungodage
چکیده

Abstr act. This paper proposes a new neural network method for classifying uncertain data (UNN). Uncertainty is widely spread in real-world data. Numerous factors lead to data uncertainty including data acquisition device error, approximate measurement, sampling fault, transmission latency, data integration error and so on. The performance and quality of data mining results are largely dependent on whether data uncertainty are properly modeled and processed. In this paper, we focus on one commonly encountered type of data uncertainty the exact data value is unavailable and we only know the probability distribution of the data. An intuitive method of handling this type of uncertainty is to represent the uncertain range by its expectation value, and then process it as certain data. This method, although simple and straightforward, may cause valuable information loss. In this paper, we extend the conventional neural networks classifier so that it can take not only certain data but also uncertain probability distribution as the input. We start with designing uncertain perceptron in linear classification, and analyze how neurons use the new activation function to process data distribution as inputs. We then illustrate how perceptron generates classification principles upon the knowledge learned from uncertain training data. We also construct a multilayer neural network as a general classifier, and propose an optimization technique to accelerate the training process. Experiment shows that UNN performs well even for highly uncertain data and it significantly outperformed the naïve neural network algorithm. Furthermore, the optimization approach we proposed can greatly improve the training efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval network data envelopment analysis model for classification of investment companies in the presence of uncertain data

The main purpose of this paper is to propose an approach for performance measurement, classification and ranking the investment companies (ICs) by considering internal structure and uncertainty. In order to reach this goal, the interval network data envelopment analysis (INDEA) models are extended. This model is capable to model two-stage efficiency with intermediate measures i...

متن کامل

INTERVAL ARTIFICIAL NEURAL NETWORK BASED RESPONSE OF UNCERTAIN SYSTEM SUBJECT TO EARTHQUAKE MOTIONS

Earthquakes are one of the most destructive natural phenomena which consist of rapid vibrations of rock near the earth’s surface. Because of their unpredictable occurrence and enormous capacity of destruction, they have brought fear to mankind since ancient times. Usually the earthquake acceleration is noted from the equipment in crisp or exact form. But in actual practice those data may not be...

متن کامل

Short-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)

The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...

متن کامل

Uncertain Nearest Neighbor Classification

This work deals with the problem of classifying uncertain data. With this aim the Uncertain Nearest Neighbor (UNN) rule is here introduced, which represents the generalization of the deterministic nearest neighbor rule to the case in which uncertain objects are available. The UNN rule relies on the concept of nearest neighbor class, rather than on that of nearest neighbor object. The nearest ne...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010