Regulation of Gustatory Physiology and Appetitive Behavior by the Drosophila Circadian Clock

نویسندگان

  • Abhishek Chatterjee
  • Shintaro Tanoue
  • Jerry H. Houl
  • Paul E. Hardin
چکیده

BACKGROUND Circadian regulation of chemosensory processes is common in animals, but little is known about how circadian clocks control chemosensory systems or the consequences of rhythms in chemosensory system function. Taste is a major chemosensory gate used to decide whether or not an animal will eat, and the main taste organ in Drosophila, the proboscis, harbors autonomous circadian oscillators. Here we examine gustatory physiology, tastant-evoked appetitive behavior, and food ingestion to understand clock-dependent regulation of the Drosophila gustatory system. RESULTS Here we report that single-unit responses from labellar gustatory receptor neurons (GRNs) to attractive and aversive tastants show diurnal and circadian rhythms in spike amplitude, frequency, and duration across different classes of gustatory sensilla. Rhythms in electrophysiological responses parallel behavioral rhythms in proboscis extension reflex. Molecular oscillators in GRNs are necessary and sufficient for rhythms in gustatory responses and drive rhythms in G protein-coupled receptor kinase 2 (GPRK2) expression that mediate rhythms in taste sensitivity. Eliminating clock function in certain GRNs increases feeding and locomotor activity, mimicking a starvation response. CONCLUSIONS Circadian clocks in GRNs control neuronal output and drive behavioral rhythms in taste responses that peak at a time of day when feeding is maximal in flies. Our results argue that oscillations in GPRK2 levels drive rhythms in gustatory physiology and behavior and that GRN clocks repress feeding. The similarity in gustatory system organization and feeding behavior in flies and mammals, as well as diurnal changes in taste sensitivity in humans, suggest that our results are relevant to the situation in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.

Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are fu...

متن کامل

Biological Rhythms: The Taste–Time Continuum

The gustatory system allows the fly to assess food quality, eliciting either acceptance or avoidance behaviors. A new study demonstrates that circadian clocks in gustatory receptor neurons regulate rhythms in taste sensitivity, drive rhythms in appetitive behavior and influence feeding.

متن کامل

Re-Patterning Sleep Architecture in Drosophila through Gustatory Perception and Nutritional Quality

Organisms perceive changes in their dietary environment and enact a suite of behavioral and metabolic adaptations that can impact motivational behavior, disease resistance, and longevity. However, the precise nature and mechanism of these dietary responses is not known. We have uncovered a novel link between dietary factors and sleep behavior in Drosophila melanogaster. Dietary sugar rapidly al...

متن کامل

Drosophila Clock Can Generate Ectopic Circadian Clocks

Circadian rhythms of behavior, physiology, and gene expression are present in diverse tissues and organisms. The function of the transcriptional activator, Clock, is necessary in both Drosophila and mammals for the expression of many core clock components. We demonstrate in Drosophila that Clock misexpression in nai;ve brain regions induces circadian gene expression. This includes major compone...

متن کامل

Secondary Taste Neurons that Convey Sweet Taste and Starvation in the Drosophila Brain

The gustatory system provides vital sensory information to determine feeding and appetitive learning behaviors. Very little is known, however, about higher-order gustatory circuits in the highly tractable model for neurobiology, Drosophila melanogaster. Here we report second-order sweet gustatory projection neurons (sGPNs) in the Drosophila brain using a powerful behavioral screen. Silencing ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010