A Generalisation of Transversals for Latin Squares
نویسنده
چکیده
We define a k-plex to be a partial latin square of order n containing kn entries such that exactly k entries lie in each row and column and each of n symbols occurs exactly k times. A transversal of a latin square corresponds to the case k = 1. For k > n/4 we prove that not all k-plexes are completable to latin squares. Certain latin squares, including the Cayley tables of many groups, are shown to contain no (2c + 1)-plex for any integer c. However, Cayley tables of soluble groups have a 2c-plex for each possible c. We conjecture that this is true for all latin squares and confirm this for orders n ≤ 8. Finally, we demonstrate the existence of indivisible k-plexes, meaning that they contain no c-plex for 1 ≤ c < k.
منابع مشابه
Transversals in Latin Squares: A Survey
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries containing no pair of entries that share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutuall...
متن کاملTransversals in Latin Squares
A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...
متن کاملThe number of transversals in a Latin square
A Latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly once in each row and column. A transversal is a set of n entries, one selected from each row and each column of a Latin square of order n such that no two entries contain the same symbol. Define T (n) to be the maximum number of transversals over all Latin squares of order n. We show that bn ≤ T (n) ≤ ...
متن کاملOn the number of transversals in latin squares
The logarithm of the maximum number of transversals over all latin squares of order n is greater than n6 (lnn + O(1)).
متن کاملMore mutually orthogonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. In this paper we give some constructions of pairwise orthogonal diagonal Latin squares. As an application of such constructions we obtain some new infinite classes of pairwise orthogonal diagonal Latin squares which are useful in the study of pairwise orthogonal diagonal Latin squares.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 9 شماره
صفحات -
تاریخ انتشار 2002