Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network
نویسندگان
چکیده
Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions - matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model's performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN's spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences.
منابع مشابه
Neural avalanches at the edge-of-chaos?
Does the brain operate at criticality, to optimize neural computation? Literature uses different fingerprints of criticality in neural networks, leaving the relationship between them mostly unclear. Here, we compare two specific signatures of criticality, and ask whether they refer to observables at the same critical point, or to two differing phase transitions. Using a recurrent spiking neural...
متن کاملCriticality of avalanche dynamics in adaptive recurrent networks
In many studies of self-organized criticality (SOC), branching processes were used to model the dynamics of the activity of the system during avalanches. This mathematical simplification was also adopted when investigating systems with a complicated connection topology including recurrent and subthreshold interactions. However, none of these studies really analyzed whether this convenient appro...
متن کاملSelf-organized criticality and the self-organizing map.
The self-organizing map (SOM), a biologically inspired, learning algorithm from the field of artificial neural networks, is presented as a self-organized critical (SOC) model of the extremal dynamics family. The SOM's ability to converge to an ordered configuration, independent of the initial state, is known and has been demonstrated, in the one-dimensional case. In this ordered configuration i...
متن کاملAvalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class
The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, ...
متن کاملNew hallmarks of criticality in recurrent neural networks
A rigorous understanding of brain dynamics and function requires a conceptual bridge between multiple levels of organization, including neural spiking and network-level population activity. Mounting evidence suggests that neural networks of cerebral cortex operate at criticality. How operating near this network state impacts the variability of neuronal spiking is largely unknown. Here we show i...
متن کامل