Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes.

نویسندگان

  • Cheng Lei
  • Fei Han
  • Duo Li
  • Wen-Cui Li
  • Qiang Sun
  • Xiang-Qian Zhang
  • An-Hui Lu
چکیده

Dopamine is an excellent and flexible agent for surface coating of inorganic nanoparticles and contains unusually high concentrations of amine groups. In this study, we demonstrate that through a controlled coating of a thin layer of polydopamine on the surface of α-Fe(2)O(3) in the dopamine aqueous solution, followed by subsequent carbonization, N-doped carbon-encapsulated magnetite has been synthesized and shows excellent electrochemical performance as anode material for lithium-ion batteries. Due to the strong binding affinity to iron oxide and excellent coating capability of this new carbon precursor, the conformal polydopamine derived carbon is continuous and uniform, and its thickness can be tailored. Moreover, due to the high percentage of nitrogen content in the precursor, the resulting carbon layer contains a moderate amount of N species, which can substantially improve the electrochemical performance. The composites synthesized by this facile method exhibit superior electrochemical performance, including remarkably high specific capacity (>800 mA h g(-1) at a current of 500 mA g(-1)), high rate capability (595 and 396 mA h g(-1) at a current of 1000 and 2000 mA g(-1), respectively) and excellent cycle performance (200 cycles with 99% capacity retention), which adds to the potential as promising anodes for the application in lithium-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites.

TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted sy...

متن کامل

Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries.

In this work, we report on a simple and scalable process to synthesize the core-shell nanostructure of MoS2@N-doped carbon nanosheets (MoS2@C), in which polydopamine is coated on the MoS2 surface and is then carbonized. An intensive investigation using transmission electron microscopy and Raman spectroscopy reveals that the as-synthesized MoS2@C possesses a nanoscopic and ultrathin layer of MoS...

متن کامل

A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.

A Fe/Fe3O4/N-carbon composite consisting of a porous carbon matrix containing a highly conductive N-doped graphene-like network and Fe/Fe3O4 nanoparticles was prepared. The porous carbon has a hierarchical structure which is inherited from rice husk and the N-doped graphene-like network formed in situ. When used as an anode material for lithium batteries, the composite delivered a reversible ca...

متن کامل

Energy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption

Novel method doped carbon with nanoparticle Cr2O3 and thin film has been studied in much thought in wavelength range, the doping can help new excellent physical and chemical properties for carbon, this application has a semiconductor feature. Nanocomposite thin film deposited on copper and glass substrates have been created by utilizing Spray Pyrolysis method. The prec...

متن کامل

Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes.

Thin carbonized polydopamine (C-PDA) coatings are found to have similar structures and electrical conductivities to those of multilayered graphene doped with heteroatoms. Greatly enhanced electrochemical properties are achieved with C-PDA-coated SnO(2) nanoparticles where the coating functions as a mechanical buffer layer and conducting bridge.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2013