Proximity-based Graph Embeddings for Multi-label Classification

نویسندگان

  • Tingting Mu
  • Sophia Ananiadou
چکیده

In many real applications of text mining, information retrieval and natural language processing, large-scale features are frequently used, which often make the employed machine learning algorithms intractable, leading to the well-known problem “curse of dimensionality”. Aiming at not only removing the redundant information from the original features but also improving their discriminating ability, we present a novel approach on supervised generation of low-dimensional, proximity-based, graph embeddings to facilitate multi-label classification. The optimal embeddings are computed from a supervised adjacency graph, called multi-label graph, which simultaneously preserves proximity structures between samples constructed based on feature and multi-label class information. We propose different ways to obtain this multi-label graph, by either working in a binary label space or a projected real label space. To reduce the training cost in the dimensionality reduction procedure caused by large-scale features, a smaller set of relation features between each sample and a set of representative prototypes are employed. The effectiveness of our proposed method is demonstrated with two document collections for text categorization based on the “bag of words” model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Information-theoretical label embeddings for large-scale image classification

We present a method for training multi-label, massively multi-class image classification models, that is faster and more accurate than supervision via a sigmoid cross-entropy loss (logistic regression). Our method consists in embedding high-dimensional sparse labels onto a lower-dimensional dense sphere of unit-normed vectors, and treating the classification problem as a cosine proximity regres...

متن کامل

Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings

We present a scalable Bayesian multi-label learning model based on learning lowdimensional label embeddings. Our model assumes that each label vector is generated as a weighted combination of a set of topics (each topic being a distribution over labels), where the combination weights (i.e., the embeddings) for each label vector are conditioned on the observed feature vector. This construction, ...

متن کامل

Word Embeddings for Multi-label Document Classification

In this paper, we analyze and evaluate word embeddings for representation of longer texts in the multi-label document classification scenario. The embeddings are used in three convolutional neural network topologies. The experiments are realized on the Czech ČTK and English Reuters-21578 standard corpora. We compare the results of word2vec static and trainable embeddings with randomly initializ...

متن کامل

Leveraging Distributional Semantics for Multi-Label Learning

We present a novel and scalable label embedding framework for large-scale multi-label learning a.k.a ExMLDS (Extreme Multi-Label Learning using Distributional Semantics). Our approach draws inspiration from ideas rooted in distributional semantics, specifically the Skip Gram Negative Sampling (SGNS) approach, widely used to learn word embeddings for natural language processing tasks. Learning s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010