Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells.

نویسندگان

  • Qing-Quan Li
  • Jing-Da Xu
  • Wen-Juan Wang
  • Xi-Xi Cao
  • Qi Chen
  • Feng Tang
  • Zhong-Qing Chen
  • Xiu-Ping Liu
  • Zu-De Xu
چکیده

PURPOSE Besides its therapeutic effects, chemotherapeutic agents also enhance the malignancy of treated cancers in clinical situations. Recently, epithelial-mesenchymal transition (EMT) has attracted attention in studies of tumor progression. We aimed to test whether transient Adriamycin treatment induces EMT and apoptosis simultaneously in cancer cells, clarify why the same type of cells responds differentially (i.e., apoptosis, EMT) to Adriamycin treatment, and elucidate the role of Twist1, the master regulator of EMT, in this process. EXPERIMENTAL DESIGN In unsynchronized MCF7 cells or cells synchronized at different phases, apoptosis, EMT, and concurrent events [multidrug resistance (MDR) and tumor invasion] after Adriamycin or/and Twist1 small interfering RNA treatment were examined in vitro and in vivo. The Adriamycin-induced Twist1 expression and the interaction of Twist1 with p53-Mdm2 were examined by immunoblotting and immunoprecipitation, respectively. RESULTS We showed in vitro that Adriamycin induced EMT and apoptosis simultaneously in a cell cycle-dependent manner. Only the cells undergoing EMT displayed enhanced invasion and MDR. Twist1 depletion completely blocked the mesenchymal transformation, partially reversed MDR, and greatly abolished invasion induced by Adriamycin. Also, we confirmed in vivo that Twist1 RNA interference improved the efficacy of Adriamycin for breast cancers. Further, Twist1 reduction in Adriamycin-treated cells promoted p53-dependent p21 induction and disrupted the association of p53 with Mdm2. CONCLUSIONS Our studies show the diverse responses to Adriamycin treatment in cells at different phases, suggest an unrecognized role of EMT in regulating MDR and invasion, and show the efficacy of Twist1 RNA interference in Adriamycin-based chemotherapies for breast cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twist1 confers multidrug resistance in colon cancer through upregulation of ATP-binding cassette transporters

Multidrug resistance is a major problem in colon cancer treatment. However, its molecular mechanisms remain unclear. Recently, the epithelial-mesenchymal transition (EMT) in anticancer drug resistance has attracted increasing attention. This study investigated whether vincristine treatment induces EMT and promotes multidrug resistance in colon cancer. The result showed that vincristine treatmen...

متن کامل

Crosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression

Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation.

Epithelial-to-mesenchymal transition (EMT) is an essential physiologic process that promotes cancer cell migration, invasion, and metastasis. Several lines of evidence from both cellular and genetic studies suggest that AKT1/PKBα, but not AKT2 or AKT3, serves as a negative regulator of EMT and breast cancer metastasis. However, the underlying mechanism by which AKT1 suppresses EMT remains poorl...

متن کامل

Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes.

UNLABELLED Metastatic breast tumor cells display an epithelial-mesenchymal transition (EMT) that increases cell motility, invasion, and dissemination. Although the transcription factor Twist1 has been shown to contribute to EMT and cancer metastasis, the signaling pathways regulating Twist1 activity are poorly understood. Here, we show that Twist1 is ubiquitously phosphorylated in 90% of 1,532 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2009