Solids Residence Time Distribution in a Three-Phase Bubble Column Reactor: An Artificial Neural Network Analysis
نویسندگان
چکیده
Residence time distribution (RTD) study of solids in a three-phase pilot-scale bubble column photoreactor has been carried out in order to provide data for the development of an artificial neural network model usable for process optimisation. The experimental data indicated that the RTD of solids was a complex nonlinear function of gas and liquid velocities as well as the contacting pattern (co-current and countercurrent flow of gas and liquid). In this study, the solid particle RTD data were modeled using feed forward artificial neural networks (ANN). The networks were trained with 250sets of input-output patterns using back-propagation algorithm. The trained networks were tested using 50-sets of RTD data previously unknown to the networks. Out of several configurations, a 3-layered network with 6-neurons in its hidden layer yielded optimal results with respect to the validation data. The optimal model and empirical data exhibited good agreement with a correlation coefficient of 0.995.
منابع مشابه
Response surface methodology and artificial neural network modeling of reactive red 33 decolorization by O3/UV in a bubble column reactor
In this work, response surface methodology (RSM) and artificial neural network (ANN) were used to predict the decolorization efficiency of Reactive Red 33 (RR 33) by applying the O3/UV process in a bubble column reactor. The effects of four independent variables including time (20-60 min), superficial gas velocity (0.06-0.18 cm/s), initial concentration of dye (50-150 ppm), and pH (3-11) were i...
متن کامل83g Axial Dispersion of Gas Phase in Slurry Bubble Column Reactor
Lu Han and Muthanna H. Al-Dahhan A gaseous tracer technique and procedures were developed and implemented to measure the axial dispersion of gas phase in a slurry bubble column reactor using air-water-glass beads (100ìm). Residence time distribution curves were obtained by measuring the response of gaseous tracer pulse input. The gas phase axial dispersion coefficient, Dg, was determined from m...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملDetermination of Suitable Operating Conditions of Fluid Catalytic Cracking Process by Application of Artificial Neural Network and Firefly Algorithm
Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, a feed forward ANN model was developed and trained with industrial data to investigate the effect of operating variables containing reactor temperature feed flow rate, the temperature of the top of the main column and the temperature of the bottom of the debutanizer tower on quality and quantity of...
متن کاملBubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کامل