Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism.

نویسندگان

  • Y Li
  • M A Trush
چکیده

Recently, copper has been shown to be capable of mediating the activation of several xenobiotics producing reactive oxygen and other radicals. Since copper exists in the nucleus and is closely associated with chromosomes and DNA bases, in this study we have investigated whether the activation of 1,4-hydroquinone (1,4-HQ) and a variety of other phenolic compounds by copper can induce strand breaks in double-stranded phi X-174 RF I DNA (phi X-174 relaxed form I DNA). In the presence of micromolar concentrations of Cu(II), DNA strand breaks were induced by 1,4-HQ and other phenolic compounds including 4,4'-biphenol, catechol, 1,2,4-benzenetriol, 2-methoxyestradiol, 2-hydroxyestradiol, diethylstilbestrol, butylated hydroxytoluene, butylated hydroxyanisole, tert-butylhydroquinone, ferulic acid, caffeic acid, chlorogenic acid, eugenol, 2-acetamidophenol, and acetaminophen. Structure-activity analysis shows that in the presence of Cu(II), the DNA cleaving activity for phenolic compounds with a 1,4-hydroquinone structure, such as 1,2,4-benzenetriol and tert-butylhydroquinone is greater than those with a catechol group (catechol, 2-hydroxyestradiol and caffeic acid). Those compounds having one phenol group, such as eugenol, 2-acetamidophenol, and acetaminophen, are the least reactive. In addition, the induced DNA strand breaks could be inhibited by bathocuproinedisulfonic acid, a Cu(I)-specific chelator, or catalase indicating that a Cu(II)/Cu(I) redox cycle and H2O2 generation are two major determinants involved in the observed DNA damage. Using reactive oxygen scavengers, it was observed that the DNA strand breaks induced by the 1,4-HQ/Cu(II) system could not be efficiently inhibited by hydroxyl radical scavengers, but could be protected by singlet oxygen scavengers, suggesting that either singlet oxygen or a singlet oxygen-like entity, possibly a copper-peroxide complex, but not free hydroxyl radical probably plays a role in the DNA damage. The above results would suggest that macromolecule-associated copper and reactive oxygen generation may be important factors in the mechanism of 1,4-HQ and other phenolic compound-induced DNA damage in target cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The equine estrogen metabolite 4-hydroxyequilenin causes DNA single-strand breaks and oxidation of DNA bases in vitro.

Premarin (Wyeth-Ayerst) is the estrogen replacement treatment of choice and continues to be one of the most widely dispensed prescriptions in North America. In addition to endogenous estrogens, Premarin contains unsaturated equine estrogens, including equilenin [1,3,5(10),6,8-estrapentaen-3-ol-17-one]. In previous work, we showed that the equilenin metabolite 4-hydroxyequilenin (4-OHEN) can be ...

متن کامل

Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules

Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded D...

متن کامل

Comparative Effects of Copper, Iron, Vanadium and Titanium on Low Density Lipoprotein Oxidation in vitro

Oxidation of low density lipoprotein (LDL) has been strongly implicated in the phathogenesis of atherosclerosis. The use of oxidants in dietary food stuff may lead to the production of oxidized LDL and may increase both the development and the progression of atherosclerosis. The present work investigated the effects of some elements including: copper (Cu), iron (Fe), vanadium (V) and titanium (...

متن کامل

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

Yeast as a model system to study metabolic impact of selenium compounds

Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 54 7 Suppl  شماره 

صفحات  -

تاریخ انتشار 1994