Extrinsic dislocation loop behavior in silicon with a thermally grown silicon nitride film

نویسندگان

  • S. B. Herner
  • V. Krishnamoorthy
  • K. S. Jones
  • M. O. Thompson
چکیده

The effect of a thermally grown silicon nitride (SiNx) film on end-of-range extrinsic dislocation loops in a silicon substrate was investigated by transmission electron microscopy. A layer of extrinsic dislocation loops was formed by annealing a Si wafer amorphized by a Ge ion implant. A nitride film was grown on the Si by further annealing in ammonia (NH3) at 810 and 910 °C for 30–180 min. Wafers with a loop layer were also annealed in argon �Ar� at the same conditions as the NH3-annealed wafers to determine loop behavior in an inert environment. Samples annealed in NH3 had a significant decrease in the net number of interstitials bound by the loops, while those annealed in Ar showed no change. The results are explained by a supersaturation of vacancies caused by the presence of the nitride film, resulting in loop dissolution. By integrating the measured vacancy flux over the distance from the nitride/Si interface to the loop layer, we extract an estimate for the relative supersaturation of vacancies at 910 °C, CV /CV* � 4, where CV is the concentration of vacancies and the asterisk denotes equilibrium. We rule out interstitial undersaturation-induced loop dissolution based on loop stability with temperature and oxidation-enhanced loop growth calculations. A comparison with estimated CV /CV* values from a previous report using the same processing equipment and parameters but monitoring the change in Sb diffusivity with nitridation shows excellent agreement. © 1997 American Institute of Physics. �S0021-8979�97�01211-5�

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering

Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their che...

متن کامل

In situ infrared and visible-light ellipsometric investigations of boron nitride thin films at elevated temperatures

In situ infrared and visible-light ellipsometric investigations of boron nitride thin films at elevated temperatures situ infrared and visible-light ellipsometric investigations of boron nitride thin films at elevated temperatures" (1998). Faculty Publications from the Department of Electrical and Computer Engineering. 14. In situ infrared ͑IR͒ spectroscopy and visible-light ͑VIS͒ spectroscopic ell...

متن کامل

Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

We have developed a multilayer, multichannel microfabricated reactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significant...

متن کامل

Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride.

Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the photoluminescence emission from 2.0 to 2.76 eV i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011