Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation.
نویسندگان
چکیده
A series of m-xylene/NOx experiments were conducted in the new Bourns College of Engineering-Center for Environmental Research and Technology dual 90 m3 indoor smog chamber to elucidate the role of NOx on the secondary organic aerosol (SOA) formation potential of m-xylene. The results presented herein demonstrate a clear dependence of m-xylene SOA formation potential on NOx, particularly at atmospherically relevant organic aerosol concentration. Experiments with lower NOx levels generated considerably more organic aerosol mass than did experiments with higher NOx levels when reacted m-xylene was held constant. For example, SOA formation from approximately 150 microg m(-3) reacted m-xylene produced 0.6-9.3 microg m(-3) aerosol mass for NOx concentrations ranging from 286 to 10 ppb. The increase in SOA formation was not attributable to changes in ozone and nitrate concentration. A general discussion about possible influences of NOx on SOA formation for this system is included.
منابع مشابه
Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA forma...
متن کاملSecondary organic aerosol formation from m-xylene, toluene, and benzene
Secondary organic aerosol (SOA) formation from the photooxidation of m-xylene, toluene, and benzene is investigated in the Caltech environmental chambers. Experiments are performed under two limiting NOx conditions; under high-NOx conditions the peroxy radicals (RO2) react only with NO, while under low-NOx conditions they react only with HO2. For all three aromatics studied (m-xylene, toluene, ...
متن کاملThe SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation
Our current understanding of secondary organic aerosol (SOA) formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i) the potential for products of multiple oxidation steps contributing to SOA, and (ii) the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of d...
متن کاملChamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake
This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH4)2SO4 seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or witho...
متن کاملRole of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation
Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 39 9 شماره
صفحات -
تاریخ انتشار 2005