FLAT CURRENTS MODULO p IN METRIC SPACES AND FILLING RADIUS INEQUALITIES

نویسندگان

  • LUIGI AMBROSIO
  • MIKHAIL G. KATZ
چکیده

We adapt the theory of currents in metric spaces, as developed by the first-mentioned author in collaboration with B. Kirchheim, to currents with coefficients in Zp. We obtain isoperimetric inequalities mod(p) in Banach spaces and we apply these inequalities to provide a proof of Gromov’s filling radius inequality which applies also to nonorientable manifolds. With this goal in mind, we use the Ekeland principle to provide quasi-minimizers of the mass mod(p) in the homology class, and use the isoperimetric inequality to give lower bounds on the growth of their mass in balls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gromov Hyperbolic Spaces and Optimal Constants for Isoperimetric and Filling Radius Inequalities

A. In this article we exhibit the optimal (i.e. largest) constants for the quadratic isoperimetric and the linear filling radius inequality which ensure that a geodesic metric space X is Gromov hyperbolic. Our results show that the Euclidean plane is a borderline case for the isoperimetric inequality. Furthermore, by only requiring the existence of isoperimetric fillings in L∞(X) satisfy...

متن کامل

Compactness for Manifolds and Integral Currents with Bounded Diameter and Volume

By Gromov’s compactness theorem for metric spaces, every uniformly compact sequence of metric spaces admits an isometric embedding into a common compact metric space in which a subsequence converges with respect to the Hausdorff distance. Working in the class or oriented k-dimensional Riemannian manifolds (with boundary) and, more generally, integral currents in metric spaces in the sense of Am...

متن کامل

Diameter-volume Inequalities and Isoperimetric Filling Problems in Metric Spaces

In this article we study metric spaces which admit polynomial diameter-volume inequalities for k-dimensional cycles. These generalize the notion of cone type inequalities introduced by M. Gromov in his seminal paper Filling Riemannian manifolds. In a first part we prove a polynomial isoperimetric inequality for k-cycles in such spaces, generalizing Gromov’s isoperimetric inequality of Euclidean...

متن کامل

Ricci-flat Metrics with U(1) Action and the Dirichlet Boundary-value Problem in Riemannian Quantum Gravity and Isoperimetric Inequalities

The Dirichlet boundary-value problem and isoperimetric inequalities for positive definite regular solutions of the vacuum Einstein equations are studied in arbitrary dimensions for the class of metrics with boundaries admitting a U(1) action. In the case of trivial bundles, apart from the flat space solution with periodic identification, such solutions include the Euclideanised Schwarzschild me...

متن کامل

On Variable Exponent Amalgam Spaces

We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009