Single-enzyme conversion of FMNH2 to 5,6-dimethylbenzimidazole, the lower ligand of B12.

نویسندگان

  • Michael J Gray
  • Jorge C Escalante-Semerena
چکیده

The synthesis of 5,6-dimethylbenzimidazole (DMB), the lower ligand of coenzyme B(12), has remained elusive. We report in vitro and in vivo evidence that the BluB protein of the photosynthetic bacterium Rhodospirillum rubrum is necessary and sufficient for catalysis of the O(2)-dependent conversion of FMNH(2) to DMB. The product of the reaction (DMB) was isolated by using reverse-phase high-pressure liquid chromatography, and its identity was established by UV-visible spectroscopy and MS. No metals were detected in homogeneous preparations of BluB, and the enzyme did not affect DMB synthesis from 4,5-dimethylphenylenediamine and ribose-5-phosphate. The effect of the lack of bluB function in R. rubrum was reflected by the impaired ability of a DeltabluB strain to convert Mg-protoporphyrin IX monomethyl ester (MPE) into protochlorophylide, a reaction of the bacteriochlorophyll biosynthetic pathway catalyzed by the MPE-cyclase enzyme present in this bacterium (BchE, EC 1.14.13.81), a predicted coenzyme B(12)-dependent enzyme. The growth defect of the DeltabluB strain observed under anoxic photoheterotrophic conditions was corrected by the addition of DMB or B(12) to the culture medium or by introducing into the strain a plasmid encoding the wild-type allele of bluB. The findings reported here close an important gap in our understanding of the enzymology of the assembly of coenzyme B(12).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bacillus megaterium Has Both a Functional BluB Protein Required for DMB Synthesis and a Related Flavoprotein That Forms a Stable Radical Species

Despite the extensive study of the biosynthesis of the complex molecule B12 (cobalamin), the mechanism by which the lower ligand 5,6-dimethylbenzimidazole (DMB) is formed has remained something of a mystery. However, recent work has identified and characterized a DMB-synthase (BluB) responsible for the oxygen-dependent, single enzyme conversion of FMN to DMB. In this work, we have identified Bl...

متن کامل

BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii

BACKGROUND Propionibacterium freudenreichii is a food grade bacterium that has gained attention as a producer of appreciable amounts of cobalamin, a cobamide with activity of vitamin B12. Production of active form of vitamin is a prerequisite for attempts to naturally fortify foods with B12 by microbial fermentation. Active vitamin B12 is distinguished from the pseudovitamin by the presence of ...

متن کامل

One pathway can incorporate either adenine or dimethylbenzimidazole as an alpha-axial ligand of B12 cofactors in Salmonella enterica.

Corrinoid (vitamin B12-like) cofactors contain various alpha-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form "complete" corrinoids aerobically by importing an "incomplete" corrinoid, such as cobinamide (Cbi), and adding appropriate alpha- and beta-axial ligands. Under...

متن کامل

Capability of Lactobacillus reuteri to Produce an Active Form of Vitamin B12 under Optimized Fermentation Conditions

There has been considerable debate on the ability of Lactobacillus reuteri to produce the active form of vitamin B12. In this study, we demonstrated the ability of two wild type strains of Lactobacillus reuteri to produce α-(5,6-dimethylbenzimidazolyl)-cobamidcyanide or cyanocobalamin which are the active form of vitamin B12. This was possible by supplying the required compounds of vitamin B12,...

متن کامل

Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12.

An insight into a previously unknown step in B(12) biosynthesis was unexpectedly obtained through our analysis of a mutant of the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti. This mutant was identified based on its unusually bright fluorescence on plates containing the succinoglycan binding dye calcofluor. The mutant contains a Tn5 insertion in a gene that has not been characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 8  شماره 

صفحات  -

تاریخ انتشار 2007