Mitochondrial superoxide dismutase in mature and developing human retinal pigment epithelium.
نویسندگان
چکیده
Human retinal pigment epithelium (RPE) contains two genetically distinct forms of superoxide dismutase (SOD) enzymes that scavenge harmful superoxide anions. Biochemical and immunochemical techniques were used to compare levels of copper-zinc- and manganese-containing forms of SOD (CuZn-SOD and Mn-SOD) in human adult and fetal RPE cells. It was found that Mn-SOD activity was higher in adult than fetal RPE cells, both in vivo and in vitro. Immunolocalization of Mn-SOD in cultured RPE cells showed a greater reactivity in the mitochondria of the adult cells. Primary cultures of adult RPE contained cells with various patterns of mitochondria as shown by immunolabeling for Mn-SOD. Adult RPE cells were more resistant to the effects of a superoxide generator, paraquat, which appeared to disrupt mitochondrial integrity as judged by staining with rhodamine 123. These results suggest that high levels of Mn-SOD protect mitochondria from oxidative damage that probably occurs with aging in the RPE.
منابع مشابه
Morphological changes in injured retinal pigment epithelium and photoreceptor cells after transplantation of stem cells into subretinal space
Introduction: Degenerative retinal diseases are main cause of irreversible blindness. Stem cells therapy is a promising way in these diseases. Therefore, mesenchymal stem cells because of its safety can produce degenerated cells and can play important role in treatment. The aim of this study was to examine morphological changes in injured retinal pigment epithelium (RPE) and photoreceptor cells...
متن کاملDrusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration.
Oxidative stress has long been linked to the pathogenesis of neurodegenerative diseases; however, whether it is a cause or merely a consequence of the degenerative process is still unknown. We show that mice deficient in Cu, Zn-superoxide dismutase (SOD1) have features typical of age-related macular degeneration in humans. Investigations of senescent Sod1(-/-) mice of different ages showed that...
متن کاملThe 5HT1a Receptor Agonist 8-Oh DPAT Induces Protection from Lipofuscin Accumulation and Oxidative Stress in the Retinal Pigment Epithelium
Age-related macular degeneration (AMD), a major cause of blindness in the elderly, is associated with oxidative stress, lipofuscin accumulation and retinal degeneration. The aim of this study was to determine if a 5-HT(1A) receptor agonist can reduce lipofuscin accumulation, reduce oxidative damage and prevent retinal cell loss both in vitro and in vivo. Autophagy-derived and photoreceptor oute...
متن کاملHistochemical study of retinal photoreceptors development during pre- and postnatal period and their association with retinal pigment epithelium
Objective(s):The aim of this study was to evaluate distribution and changes of glycoconjugates of retinal photoreceptors during both pre- and postnatal development. Materials and Methods: Tissue sections from days 15 to 20 of Wistar rat embryos and 1 to 12 postnatal days of rat newborns including developing eye were prepared for lectinhistochemistry technique. Horseradish peroxidase (HRP)-label...
متن کامل17-β estradiol protects ARPE-19 cells from oxidative stress through estrogen receptor-β.
PURPOSE To elucidate the mechanism of 17-β estradiol (17β-E(2))-mediated protection of retinal pigment epithelium (RPE) from oxidative stress. METHODS Cultured ARPE-19 cells were subjected to oxidative stress with t-butyl hydroxide or hydrogen peroxide in the presence or absence of 17β-E(2). Reactive oxygen species (ROS) were measured using H(2)DCFDA fluorescence. Apoptosis was evaluated by c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 33 6 شماره
صفحات -
تاریخ انتشار 1992