Numerical stability of fast trigonometric and orthogonal wavelet transforms

نویسندگان

  • Gerlind Plonka
  • Manfred Tasche
چکیده

Fast trigonometric transforms and periodic orthogonal wavelet transforms are essential tools for numerous practical applications. It is very important that fast algorithms work stable in a floating point arithmetic. This survey paper presents recent results on the worst case analysis of roundoff errors occurring in floating point computation of fast Fourier transforms, fast cosine transforms, and periodic orthogonal wavelet transforms. All these algorithms realize matrix-vector products with unitary matrices. The results are mainly based on a factorization of a unitary matrix into a product of sparse, almost unitary matrices. It is shown that under certain conditions fast trigonometric and periodic orthogonal wavelet transforms can be remarkably stable. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Stability of Biorthogonal Wavelet Transforms

For orthogonal wavelets, the discrete wavelet and wave packet transforms and their inverses are orthogonal operators with perfect numerical stability. For biorthogonal wavelets, numerical instabilities can occur. We derive bounds for the 2-norm and average 2-norm of these transforms, including eecient numerical estimates if the number L of decomposition levels is small, as well as growth estima...

متن کامل

Numerical Stability of Fast Trigonometric Transforms – A Worst Case Study

This paper presents some new results on numerical stability for various fast trigonometric transforms. In a worst case study, we consider the numerical stability of the classical fast Fourier transform (FFT) with respect to different precomputation methods for the involved twiddle factors and show the strong influence of precomputation errors on the numerical stability of the FFT. The examinati...

متن کامل

Numerical stability of fast trigonometrictransformsDaniel

This paper presents stability results for various fast trigonometric transforms. We consider the numerical stability of the classical fast Fourier transform (FFT) with respect to diierent precomputation methods for the involved twiddle factors and show the strong innuence of precomputation errors on the numerical stability of the FFT. The examinations are extended to fast algorithms for the com...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Stability Results for Scattered Data Interpolation by Trigonometric Polynomials

A fast and reliable algorithm for the optimal interpolation of scattered data on the torus Td by multivariate trigonometric polynomials is presented. The algorithm is based on a variant of the conjugate gradient method in combination with the fast Fourier transforms for nonequispaced nodes. The main result is that under mild assumptions the total complexity for solving the interpolation problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007