A Clt concerning Critical Points of Random Functions on a Euclidean Space

نویسنده

  • LIVIU I. NICOLAESCU
چکیده

We prove a central limit theorem concerning the number of critical points in large cubes of an isotropic Gaussian random function on a Euclidean space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics of Linear Families of Smooth Functions on Knots

Given a knot K in an Euclidean space R, and a finite dimensional subspace V ⊂ C∞(K), we express the expected number of critical points of a random function in V in terms of an integral-geometric invariant of K and V . When V consists of the restrictions to K of homogeneous polynomials of degree ` on R, this invariant takes the form of total curvature of a certain immersion of K. In particular, ...

متن کامل

Umbilicity of (Space-Like) Submanifolds of Pseudo-Riemannian Space Forms

We study umbilic (space-like) submanifolds of pseudo-Riemannian space forms, then define totally semi-umbilic space-like submanifold of pseudo Euclidean space and relate this notion to umbilicity. Finally we give characterization of total semi-umbilicity for space-like submanifolds contained in pseudo sphere or pseudo hyperbolic space or the light cone.A pseudo-Riemannian submanifold M in (a...

متن کامل

On Poisson and Composed Poisson Stochastic Set Functions

Several investigations has recently been made concerning Poisson and composed Poisson stochastic processes. The ordinary Poisson process is conceivable as a sequence of points, distributed at random on the time axis and this idea can be generalized to more than onedimensional spaces. The latter case occurs in making a blood-count, in counting stars, etc. In [8], [4], [6] and [15] conditions are...

متن کامل

Clt S for Poisson Hyperplane Tessellations

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in R d. This result generalizes an earlier one proved by Paroux [Adv. for intersection points of motion-invariant Poisson line processes in R 2. Our proof is based on Hoeffd-ing's decomposition of U-statistics which seems to be more efficient and adequate to tackle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015