Fabrication of uniform multi-compartment particles using microfludic electrospray technology for cell co-culture studies.
نویسندگان
چکیده
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.
منابع مشابه
KEY WORDS (Times New Roman, 12 Points, Capital, Bold; Style: Titre1)
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming m...
متن کاملFabrication and Characterization of Nanocapsules of PLGA Containing BSA Using Electrospray Technique
Objective(s): Encapsulated pharmaceuticals are presently the object of comprehensive investigations in many research centers due to their increased therapeutic efficiency, bioavailability, and high dissolution rate. There are different procedures for encapsulation and choice of procedure influences the size of particles for intended applications. Methods:...
متن کاملFabrication of Biodegradable PCL Particles as well as PA66 Nanofibers via Air-Sealed Centrifuge Electrospinning (ASCES)
This study presents a method for fabrication of ultrafine polymeric nanofibers as well as nano/micro particles utilizing centrifugal and electrostatic forces simultaneously. To reduce the diameter and variety of nanofibers produced from solid state polymerized PA66, a unique electrocentrifuge spinning device was utilized with a rotating nozzle and collector, while the fabrication process (spinn...
متن کاملFabrication of functionally graded Ni-Al2O3 nanocomposite coating and evaluation of its properties
In this study, functionally graded Ni-Al2O3 composite coating (FGN-A) has been produced from nickel Watt’s bath containing different concentrations of Al2O3 particles. For this, different composite coatings were electroplated in the same bath with different particles concentration to find the optimum concentration of particles in which the maximum content with uniform distribution of Al2O3 part...
متن کاملFabrication and Evaluation of Pt/M (M= Co, Fe) Chitosan Supported Catalysts for Methanol Electrooxidation: Application in Direct Alcohol Fuel Cell
In this work, Pt, Fe and Co nanoparticles were prepared by chemical reduction of the metal salts in chitosan as the support. NaBH4 was used as the reducing agent Pt-Fe, Pt-Co and Pt-Fe-Co-chitosan nanocomposites were synthesized and characterized by UV–Vis spectra and Transmission electron microscopy images. GC/Pt-chitosan, GC/Pt-Co-chitosan, GC/Pt-Fe-chitosan and GC/Pt-Co-Fe-chitosan electrode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomicrofluidics
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2013