Protein kinase C activity in mouse eggs regulates gamete membrane interaction.
نویسندگان
چکیده
Gamete membrane interaction is critical to initiate the development of a new organism. The signaling pathways governing this event, however, are poorly understood. In this report, we provide the first evidence that protein kinase C activity in mouse eggs plays a crucial role in the regulation of this process. Stimulating PKC activity in mouse eggs by phorbol 12-myristate 13-acetate (PMA) drastically inhibited the egg's membrane ability to bind and fuse with sperm. Surprisingly, this significant reduction of gamete membrane interaction was also observed in eggs treated with the PKC inhibitors staurosporine and calphostin c. In further analysis, we found that while no change of egg actin cytoskeleton was detected after either PMA or calphostin c treatment, the structural morphology of egg surface microvilli was severely altered in the PMA-treated eggs, but not in the calphostin c-treated eggs. Moreover, sperm, which bound but did not fuse with the eggs treated with the anti-CD9 antibody KMC8, were liberated from the egg membrane after PMA, but not calphostin c, treatment. Taken together, these results suggest that egg PKC may be precisely balanced to regulate gamete membrane interaction in a biphasic mode, and this biphasic regulation is executed through two different mechanisms.
منابع مشابه
Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion.
Gamete fusion is the fundamental first step initiating development of a new organism. Female mice with a gene knockout for the tetraspanin CD9 (CD9 KO mice) produce mature eggs that cannot fuse with sperm. However, nothing is known about how egg surface CD9 functions in the membrane fusion process. We found that constructs including CD9's large extracellular loop significantly inhibited gamete ...
متن کاملRegulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCζ-mediated mouse egg activation
BACKGROUND INFORMATION At fertilization in mammalian eggs, the sperm induces a series of Ca(2+) oscillations via the production of inositol 1,4,5-trisphosphate. Increased inositol 1,4,5-trisphosphate production appears to be triggered by a sperm-derived PLCzeta (phospholipase C-zeta) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5-bisphosphate hydrolytic activity ...
متن کاملI-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64
Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...
متن کاملThe Dynamics of PKC-Induced Phosphorylation Triggered by Ca2+ Oscillations in Mouse Eggs
Fertilization of mammalian eggs is characterized by a series of Ca(2+) oscillations triggered by a phospholipase C activity. These Ca(2+) increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC-induced phosphorylation in mouse ...
متن کاملResidues SFQ ( 173 - 175 ) in the large extracellular loop of CD 9 are required for gamete fusion
Sperm-egg binding and fusion initiate the development of a new organism, but the molecular mechanisms of gamete adhesion, gamete membrane fusion and associated signaling are still poorly understood. Recently, one egg surface protein, CD9, was shown to be essential for gamete fusion. The fertility of CD9-deficient female mice is severely reduced because membrane fusion ability is lost in CD9-def...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular reproduction and development
دوره 74 11 شماره
صفحات -
تاریخ انتشار 2007