High efficiency recombineering in lactic acid bacteria
نویسندگان
چکیده
The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the D-Ala-D-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other gram-positive bacteria.
منابع مشابه
CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri
Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR-Cas systems, such as the Streptococcus pyogenes CRISPR-Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. ...
متن کاملExploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri
Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs...
متن کاملPrecision genome engineering in lactic acid bacteria
Innovative new genome engineering technologies for manipulating chromosomes have appeared in the last decade. One of these technologies, recombination mediated genetic engineering (recombineering) allows for precision DNA engineering of chromosomes and plasmids in Escherichia coli. Single-stranded DNA recombineering (SSDR) allows for the generation of subtle mutations without the need for selec...
متن کاملAntimicrobial Effect of Lactic Acid Bacteria against Common Pathogenic Bacteria
Abstract Background and Objective: Probiotics are living microorganisms that have beneficial effects on the health of digestive system. The aim of this study was to evaluate the antimicrobial ability of acidic and neutral supernatants (culture supernatant) of lactic acid bacteria against common bacterial pathogens. Meth...
متن کاملEffect of Different Lactic Acid Bacteria on Phytic Acid Content and Quality of Whole Wheat Toast Bread
ABSTRACT: Nowadays, consumption of whole flours and flours with high extraction rate is recommended, because of their large amount of fiber, vitamins and minerals. Despite nutritional benefits of whole flours, concentration of some undesirable components such as phytic acid is higher than white flour. In this study, the effect of several sourdough lactic acid bacteria on toast bread was investi...
متن کامل