Extremal Values of Half-Eigenvalues for p-Laplacian with Weights in L1 Balls

نویسنده

  • Ping Yan
چکیده

For one-dimensional p-Laplacian with weights in Lγ : L 0, 1 ,R 1 ≤ γ ≤ ∞ balls, we are interested in the extremal values of the mth positive half-eigenvalues associated with Dirichlet, Neumann, and generalized periodic boundary conditions, respectively. It will be shown that the extremal value problems for half-eigenvalues are equivalent to those for eigenvalues, and all these extremal values are given by some best Sobolev constants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

A Survey on Extremal Problems of Eigenvalues

and Applied Analysis 3 The final solution to problems in 1.3 can yield optimal lower and upper bounds of eigenvalues. Actually, from 1.3 , we have In ∥q ∥ ∥ 1 ) ≤ λn ( q ) ≤ Mn ∥q ∥ ∥ 1 ) ∀q ∈ L1, 1.4 which are optimal. Several extremal problems on Dirichlet, Neumann, and periodic eigenvalues of the Sturm-Liouville operator and the p-Laplace operator have been studied recently, where the potent...

متن کامل

Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls

Article history: Received 16 April 2008 Revised 17 March 2009 Available online 2 April 2009 MSC: primary 34L15 secondary 34L40, 47J30

متن کامل

Spectrum of One-Dimensional p-Laplacian with an Indefinite Integrable Weight

Motivated by extremal problems of weighted Dirichlet or Neumann eigenvalues, we will establish two fundamental results on the dependence of weighted eigenvalues of the one-dimensional p-Laplacian on indefinite integrable weights. One is the continuous differentiability of eigenvalues in weights in the Lebesgue spaces L with the usual norms. Another is the continuity of eigenvalues in weights wi...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010