Variational Analysis of the Abscissa Mapping for Polynomials via the Gauss-Lucas Theorem
نویسندگان
چکیده
Consider the linear space n of polynomials of degree n or less over the complex field. The abscissa mapping on n is the mapping that takes a polynomial to the maximum real part of its roots. This mapping plays a key role in the study of stability properties for linear systems. Burke and Overton have shown that the abscissa mapping is everywhere subdifferentially regular in the sense of Clarke on the manifold n of polynomials of degree n. In addition, they provide a formula for the subdifferential. The result is surprising since the abscissa mapping is not Lipschitzian on . A key supporting lemma uses a proof technique due to Levantovskii for determining the tangent cone to the set of stable polynomials. This proof is arduous and opaque. It is a major obstacle to extending the variational theory to other functions of the roots of polynomials. In this note, we provide an alternative proof based on the Gauss-Lucas Theorem. This new proof is both insightful and elementary.
منابع مشابه
Variational analysis of functions of the roots of polynomials
The Gauss-Lucas Theorem on the roots of polynomials nicely simplifies the computation of the subderivative and regular subdifferential of the abscissa mapping on polynomials (the maximum of the real parts of the roots). This paper extends this approach to more general functions of the roots. By combining the Gauss-Lucas methodology with an analysis of the splitting behavior of the roots, we obt...
متن کاملVariational Analysis of the Abscissa Mapping for Polynomials∗
The abscissa mapping on the affine variety Mn of monic polynomials of degree n is the mapping that takes a monic polynomial to the maximum of the real parts of its roots. This mapping plays a central role in the stability theory of matrices and dynamical systems. It is well known that the abscissa mapping is continuous on Mn, but not Lipschitz continuous. Furthermore, its natural extension to t...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملStrong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 28 شماره
صفحات -
تاریخ انتشار 2001