A Priori Field Study of the Subgrid-Scale Heat Fluxes and Dissipation in the Atmospheric Surface Layer

نویسندگان

  • FERNANDO PORTÉ-AGEL
  • MARC B. PARLANGE
  • CHARLES MENEVEAU
  • WILLIAM E. EICHINGER
چکیده

Field measurements are carried out to study statistical properties of the subgrid-scale (SGS) heat fluxes and SGS dissipation of temperature variance in the atmospheric surface layer, and to evaluate the ability of several SGS models to reproduce these properties. The models considered are the traditional eddy-diffusion model, the nonlinear (gradient) model, and a mixed model that is a linear combination of the other two. High-resolution wind velocity and temperature fields are obtained from arrays of 3D sonic anemometers placed in the surface layer. The basic setup consists of two horizontal parallel arrays (seven sensors in the lower array and five sensors in the upper array) at different heights (2.4 and 2.9 m, respectively). Data from this setup are used to compute the SGS heat flux and dissipation of temperature variance by means of 2D filtering in horizontal planes, invoking Taylor’s hypothesis. Model coefficients are measured from the data by requiring the real and modeled timeaveraged dissipation rates to match. Various other experimental setups that differ mainly in the separation between the sensors are utilized to show that filter size has a considerable effect on the various model coefficients near the ground. For the basic setup, conditional averaging is used to study the relation between large-scale coherent structures (sweeps and ejections) and the SGS quantities. It is found that under unstable conditions, negative SGS dissipation, indicative of backscatter of temperature variance from the subgrid scales to the resolved field, is most important during the onset of ejections transporting relatively warm air upward. Large positive SGS dissipation of temperature variance is associated with the end of ejections (and/or the onset of sweeps) characterized by strong drops in temperature and vertical velocity under unstable conditions. These results are also supported by conditionally sampled 2D (streamwise and vertical) velocity and temperature distributions, obtained using an additional setup consisting of the 12 anemometers placed in a vertical array. The nonlinear and mixed model reproduce the observations better than the eddy-diffusion model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

A New Dynamical Subgrid Model for the Planetary Surface Layer. Part II: Analytical Computation of Fluxes, Mean Profiles, and Variances

A new dynamical subgrid model for turbulent flow is used to derive the structure of the heat and momentum fluxes, mean wind and temperature profiles, and temperature and velocity variances, as a function of the Richardson number, in the surface layer of the planetary boundary layer. Analytical solutions are obtained for stationary, homogeneous surface layers and are compared with field observat...

متن کامل

The heat flux and the temperature gradient in the lower atmosphere

[1] Most parameterizations used in Large Eddy Simulations of the atmospheric boundary layer are based on the assumption that subgrid-scale fluxes are aligned against spatial gradients of transported quantities (down-gradient closures). Based on field experiments, we determine the distribution and most probable relative orientations of the subgrid-scale (SGS) heat flux relative to parameterizati...

متن کامل

Heat and mass transfer of nanofluid over a linear stretching surface with Viscous dissipation effect

Boundary Layer Flow past a stretching surface with constant wall temperature, of a nanofluid is studied for heat transfer characteristics. The system of partial differential equations describing such a flow is subjected to similarity transformations gives rise to a boundary value problem involving a system of ordinary differential equations. This system is solved by a shooting method. Effect of...

متن کامل

Modeling of filtered heat release for large eddy simulation of compressible infinitely fast reacting flows

A priori and a posteriori studies for large eddy simulation of the compressible turbulent infinitely fast reacting shear layer are presented. The filtered heat release appearing in the energy equation is unclosed and the accuracy of different models for the filtered scalar dissipation rate and the conditional filtered scalar dissipation rate of the mixture fraction in closing this term is analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001