The paranodal complex of F3/contactin and caspr/paranodin traffics to the cell surface via a non-conventional pathway.

نویسندگان

  • Carine Bonnon
  • Laurence Goutebroze
  • Natasha Denisenko-Nehrbass
  • Jean-Antoine Girault
  • Catherine Faivre-Sarrailh
چکیده

During myelination, membrane-specialized domains are generated by complex interactions between axon and glial cells. The cell adhesion molecules caspr/paranodin and F3/contactin play a crucial role in the generation of functional septate-like junctions at paranodes. We have previously demonstrated that association with the glycosylphosphatidylinositol-linked F3/contactin is required for the recruitment of caspr/paranodin into the lipid rafts and its targeting to the cell surface. When transfected alone in neuroblastoma N2a cells, caspr/paranodin is retained in the endoplasmic reticulum (ER). Using chimerical constructs, we show that the cytoplasmic region does not contain any ER retention signal, whereas the ectodomain plays a crucial role in caspr/paranodin trafficking. A series of truncations encompassing the extracellular region of caspr/paranodin was unable to abolish ER retention. We show that N-glycosylation and quality control by the lectin-chaperone calnexin are required for the cell surface delivery of caspr/paranodin. Cell surface transport of F3/contactin and caspr/paranodin is insensitive to brefeldin A and the two glycoproteins are endoglycosidase H-sensitive when associated in complex, recruited into the lipid rafts, and expressed on the cell surface. Our results indicate a Golgi-independent pathway for the paranodal cell adhesion complex that may be implicated in the segregation of axonal subdomains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Glycosylphosphatidyl Inositol-Anchored Adhesion Molecule F3/Contactin Is Required for Surface Transport of Paranodin/Contactin-Associated Protein (Caspr)

Paranodin/contactin-associated protein (caspr) is a transmembrane glycoprotein of the neurexin superfamily that is highly enriched in the paranodal regions of myelinated axons. We have investigated the role of its association with F3/contactin, a glycosylphosphatidyl inositol (GPI)-anchored neuronal adhesion molecule of the Ig superfamily. Paranodin was not expressed at the cell surface when tr...

متن کامل

Neurofascin Is a Glial Receptor for the Paranodin/Caspr-Contactin Axonal Complex at the Axoglial Junction

In myelinated fibers of the vertebrate nervous system, glial-ensheathing cells interact with axons at specialized adhesive junctions, the paranodal septate-like junctions. The axonal proteins paranodin/Caspr and contactin form a cis complex in the axolemma at the axoglial adhesion zone, and both are required to stabilize the junction. There has been intense speculation that an oligodendroglial ...

متن کامل

Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr

An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on...

متن کامل

Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination.

Specialized paranodal junctions form between the axon and the closely apposed paranodal loops of myelinating glia. They are interposed between sodium channels at the nodes of Ranvier and potassium channels in the juxtaparanodal regions; their precise function and molecular composition have been elusive. We previously reported that Caspr (contactin-associated protein) is a major axonal constitue...

متن کامل

Axo-Glial Interactions Regulate the Localization of Axonal Paranodal Proteins

Mice incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted paranodal axo-glial interactions in the central and peripheral nervous systems. Using these mutants, we have analyzed the role that axo-glial interactions play in the establishment of axonal protein distribution in the region of the node of Ranvier. Whereas the clustering of the nodal proteins, sodium channels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 48  شماره 

صفحات  -

تاریخ انتشار 2003