Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa.
نویسندگان
چکیده
In this article, we report for the first time on the copper (Cu(2+)) binding characteristics of the far-red fluorescent protein, HcRed, and its application in the development of a reagentless sensing system for copper. The far-red emission of HcRed (lambda(max) = 645 nm) where background cellular fluorescence is low should prove to be advantageous in the development of the sensing system. In the studies performed in our laboratory, we found that the fluorescence of HcRed is quenched in the presence of copper ions (Cu(2+)). The results obtained through UV-visible and circular dichroism spectra generated in the presence and absence of copper, as well as Stern-Volmer plots at different temperatures, indicate static quenching of HcRed fluorescence in the presence of copper, possibly through the formation of a copper-protein complex. On the basis of this observation, we developed a reagentless sensing system for the detection of copper(II) based on HcRed as the biosensing element. A detection limit for Cu(2+) in the nanomolar range was obtained. HcRed was found to bind copper ions selectively when compared with other divalent ions. A dissociation constant of 3.6muM was observed for copper binding. Histidine and cysteine residues are commonly involved in copper binding within proteins; therefore, to investigate the role of these amino acids present in HcRed, we chemically modified Cys and His residues using iodoacetamide and diethyl pyrocarbonate, respectively. The effect of copper addition on the fluorescence of the chemically modified HcRed was investigated. The His modification of HcRed substantially affected copper ion binding, pointing to histidine as the possible amino acid residue involved in the binding of copper ions in HcRed. A purification strategy for HcRed was also developed based on a copper immobilized affinity column without the addition of any affinity tag on the protein. The HcRed-based copper sensing system can potentially be employed to perform intracellular copper detection by genetically encoding the biosensing element or can be employed in environmental sensing.
منابع مشابه
Identifying Activated T Cells in Reconstituted RAG Deficient Mice Using Retrovirally Transduced Pax5 Deficient Pro-B Cells
Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enha...
متن کاملHcRed, a Genetically Encoded Fluorescent Binary Cross-Linking Agent for Cross-Linking of Mitochondrial ATP Synthase in Saccharomyces cerevisiae
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells exp...
متن کاملNew Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa
Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCR...
متن کاملKunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1-APHC3 fro...
متن کاملIsomerization mechanism of the HcRed fluorescent protein chromophore.
To understand how the protein achieves fluorescence, the isomerization mechanism of the HcRed chromophore is studied both under vacuum and in the solvated red fluorescent protein. Quantum mechanical (QM) and quantum mechanical/molecular mechanical (QM/MM) methods are applied both for the ground and the first excited state. The photoinduced processes in the chromophore mainly involve torsions ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 370 1 شماره
صفحات -
تاریخ انتشار 2007