Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina
نویسندگان
چکیده
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7-14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.
منابع مشابه
Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating <em>STK38L</em> Mutant Retina
A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labe...
متن کاملA Hybrid Photoreceptor Expressing Both Rod and Cone Genes in a Mouse Model of Enhanced S-Cone Syndrome
Rod and cone photoreceptors subserve vision under dim and bright light conditions, respectively. The differences in their function are thought to stem from their different gene expression patterns, morphologies, and synaptic connectivities. In this study, we have examined the photoreceptor cells of the retinal degeneration 7(rd7) mutant mouse, a model for the human enhanced S-cone syndrome (ESC...
متن کاملPredominant rod photoreceptor degeneration in Leber congenital amaurosis.
PURPOSE An unusual retinal vascular morphology in an enucleated eye from a patient with Leber congenital amaurosis (LCA) has been associated with a mutation in AIPL1. The AIPL1 protein is expressed in the pineal gland and retinal photoreceptors. In the retina, AIPL1 is expressed in both developing cone and rod photoreceptors, but it is restricted to rod photoreceptors in the adult human retina....
متن کاملExcess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors.
The orphan nuclear receptor NR2E3 is a direct transcriptional target of NRL, the key basic motif leucine zipper transcription factor that dictates rod versus cone photoreceptor cell fate in the mammalian retina. The lack of NR2E3 function in humans and in retinal degeneration rd7 mutant mouse leads to increased S-cones accompanied by rod degeneration, whereas ectopic expression of Nr2e3 in the ...
متن کاملGDNF regulates chicken rod photoreceptor development and survival in reaggregated histotypic retinal spheres.
PURPOSE To investigate the role of glial-cell-line-derived neurotrophic factor (GDNF) on proliferation, differentiation, and apoptosis of different retinal cell types--in particular, photoreceptor cells. METHODS Reaggregated histotypic spheres, derived from retinal cells of the E6 chicken embryo were used. Under rotation, so-called rosetted spheroids arose by aggregation of dissociated retina...
متن کامل