Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.

نویسندگان

  • Dongeun Huh
  • Joong Hwan Bahng
  • Yibo Ling
  • Hsien-Hung Wei
  • Oliver D Kripfgans
  • J Brian Fowlkes
  • James B Grotberg
  • Shuichi Takayama
چکیده

This paper describes a simple microfluidic sorting system that can perform size profiling and continuous mass-dependent separation of particles through combined use of gravity (1 g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: (i) initial hydrodynamic focusing of particles in a microchannel oriented parallel to gravity and (ii) subsequent sample separation where positional difference between particles with different mass generated by sedimentation is further amplified by hydrodynamic flows whose streamlines gradually widen out due to the geometry of a widening microchannel oriented perpendicular to gravity. The microfluidic sorting device was fabricated in poly(dimethylsiloxane), and hydrodynamic flows in microchannels were driven by gravity without using external pumps. We conducted theoretical and experimental studies on fluid dynamic characteristics of laminar flows in widening microchannels and hydrodynamic amplification of particle separation. Direct trajectory monitoring, collection, and post-analysis of separated particles were performed using polystyrene microbeads with different sizes to demonstrate rapid (<1 min) and high-purity (>99.9%) separation. Finally, we demonstrated biomedical applications of our system by isolating small-sized (diameter <6 microm) perfluorocarbon liquid droplets from polydisperse droplet emulsions, which is crucial in preparing contrast agents for safe, reliable ultrasound medical imaging, tracers for magnetic resonance imaging, or transpulmonary droplets used in ultrasound-based occlusion therapy for cancer treatment. Our method enables straightforward, rapid, real-time size monitoring and continuous separation of particles in simple stand-alone microfabricated devices without the need for bulky and complex external power sources. We believe that this system will provide a useful tool to separate colloids and particles for various analytical and preparative applications and may hold potential for separation of cells or development of diagnostic tools requiring point-of-care sample preparation or testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification

This paper describes a simple microfluidic sorting system that can perform size-profiling and continuous mass-dependent separation of particles through combined use of gravity (1g) and hydrodynamic flows capable of rapidly amplifying sedimentation-based separation between particles. Operation of the device relies on two microfluidic transport processes: i) initial hydrodynamic focusing of parti...

متن کامل

Microfluidic Hydrodynamic Cell Separation: A Review

Microfluidic continuous cell separation based on hydrodynamic interaction in a microfluidic channel has attracted attention because of its robustness, high throughput and cell viability. This paper systematically gives an overview on recent advances in hydrodynamic particle and cell separation in microfluidic devices. It presents the basic ideas and fluid mechanics for the hydrodynamic interact...

متن کامل

Microfluidic Device for Continuous Particle Separation Using Hydrodynamic Filtration

A size-dependent particle separation (classification) is one of the most important procedures in biochemical, environmental, or medical analyses and their applications. However, the smaller particle size or the smaller size difference makes the particle classification difficult. The Lab-on-a-Chip concept have encouraged the miniaturization of various separation or selection methods for small pa...

متن کامل

Microfluidic particle sorter employing flow splitting and recombining.

This paper describes an improved microfluidic device that enables hydrodynamic particle concentration and size-dependent separation to be carried out in a continuous manner. In our previous study, a method for hydrodynamic filtration and sorting of particles was proposed using a microchannel having multiple branch points and side channels, and it was applied for continuous concentration and sep...

متن کامل

Mechanism governing separation in microfluidic pinched flow fractionation devices

We present a computational investigation of the mechanism governing size-based particle separation in microfluidic pinched flow fractionation. We study the behavior of particles moving through a pinching gap (i.e., a constriction in the aperture of a channel) in the Stokes regime (negligible fluid and particle inertia) as a function of particle size. The constriction aperture is created by a pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 79 4  شماره 

صفحات  -

تاریخ انتشار 2007