Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic
نویسندگان
چکیده
The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics.
منابع مشابه
Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2
The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallizatio...
متن کاملMECHANICAL AND CHEMICAL PROPERTIES OF SiO2-Al2O3-CaO-MgO (R2O) GLASS CERAMICS IN THE PRESENCE OF VARIOUS NUCLEATING AGENTS
Abstract: The application of inexpensive materials such as copper, zinc, lead, iron and steel slag in manufacturing of glass and glass-ceramic products in construction industry, lining materials as anti-corrosion and anti-abrasion coatings in metals and etc, has led to considerable progress in glass technology in recent years. The composition of slag glass-ceramics is mainly located in the ...
متن کاملTHE COMPARISON OF MECHANICAL PROPERTIES OF SINTERED ?. QUARTZ SOLID SOLUTION AND GAHNITE GLASS – CERAMICS IN ZNO-AL2O3-SIO2 SYSTEM
The effect of precipitation of ?.qss. and gahnite phases during heat treatment of glass frits in the ZnO-Al2O3-SiO2 system on the mechanical property of resulting glass-ceramic specimens were investigated. It was shown that gahnite glass-ceramics had higher bend strength and toughness values than ?.qss. ones. The results are attributed to the higher modulus of elasticity as well as higher therm...
متن کاملEFFECTS OFVARIOUS NUCLEATION AGENTS ON CRYSTALLIZATION KINETIC OFLAS GLASS CERAMIC
The effect of Y2O3, CeO2, P2O5, ZrO2 and TiO2 in single, double and triple form on crystallization mechanism of Li2OAl2O3- SiO2(LAS) glass-ceramic system was investigated .The nucleation and crystallization peak temperatures of optimized samples in each group were determined by Ray & Day method .The crystalline phase was determined by the X-ray diffractometery .The micro-structure of the sample...
متن کاملTHE EFFECT OF COMPLEX NUCLEATING AGENT ON THE PHYSICAL AND CHEMICAL PROPERTIES OF Li2O-Al2O3-SiO2 GLASS CERAMIC
Abstract: In the present work, effect of the nucleating agent such as TiO2, ZrO2, P2O5, Ye2O3 and CeO2 in single, double, triple and fourth systems on the crystallization behavior of various compositions was studied. Using differential thermal analysis (DTA), the composition of Li2O-Al2O3-SiO2 (LAS) was optimized and the coefficient of thermal expansion (CTE), three point flexural strength, har...
متن کامل