High active carrier concentration in n-type, thin film Ge using delta-doping

نویسندگان

  • Rodolfo E. Camacho-Aguilera
  • Yan Cai
  • Jonathan T. Bessette
  • Lionel C. Kimerling
  • Jurgen Michel
چکیده

We demonstrate CVD in situ doping of Ge by utilizing phosphorus delta-doping for the creation of a high dopant diffusion source. Multiple monolayer delta doping creates source phosphorous concentrations above 1 × 10cm, and uniform activated dopant concentrations above 4 × 10cm in a 600-800nm thick Ge layer after in-diffusion. By controlling dopant out-diffusion, near-complete incorporation of phosphorus diffusion source is shown. ©2012 Optical Society of America OCIS codes: (310.1860) Deposition and fabrication; (310.3840) Materials and process characterization; (140.3380) Laser materials; (160.3130) Integrated optics materials. References and links 1. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006). 2. R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2(1), 1–6 (2010). 3. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527– 534 (2010). 4. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Geon-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009). 5. E. Kasper, M. Oehme, T. Aguirov, J. Werner, M. Kittler, and J. Schulze, “Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes,” in Proceedings of Group IV Photonics 2010 (2010). 6. P. Velha, K. Gallacher, D. C. Dumas, M. Myronov, D. R. Leadley, and D. J. Paul, “Direct band-gap electroluminescence from strained n-doped germanium diode,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CW1L.7. 7. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009). 8. M. de Kersauson, R. Jakomin, M. El Kurdi, G. Beaudoin, N. Zerounian, F. Aniel, S. Sauvage, I. Sagnes, and P. Boucaud, “Direct and indirect band gap room temperature electroluminescence of Ge diodes,” J. Appl. Phys. 108(2), 023105 (2010). 9. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010). 10. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012). 11. X. Sun, J. Liu, L. C. Kimerling, J. Michel, and T. L. Koch, “Band-engineered Ge as gain medium for Si-based laser,” in Integrated Photonics and Nanophotonics Research and Applications (IPNRA) Topical Meeting, (Boston, MA, USA, 2008). 12. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Direct gap photoluminescence of n-type tensile-strained Ge-onSi,” Appl. Phys. Lett. 95(1), 011911 (2009). 13. X. Sun, “Ge-on-Si light-emitting materials and devices for silicon photonics,” Ph.D. dissertation (MIT, 2009). 14. S. Brotzmann and H. Bracht, “Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium,” J. Appl. Phys. 103(3), 033508 (2008). 15. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Optical bleaching of thin film Ge on Si,” ECS Trans. 16, 881– 889 (2008). 16. A. Satta, E. Simoen, R. Duffy, T. Janssens, T. Clarysse, A. Benedetti, M. Meuris, and W. Vandervorst, “Diffusion, activation, and regrowth behavior of high dose P implants in Ge,” Appl. Phys. Lett. 88(16), 162118 (2006). #175796 $15.00 USD Received 10 Sep 2012; revised 25 Sep 2012; accepted 25 Sep 2012; published 28 Sep 2012 (C) 2012 OSA 1 November 2012 / Vol. 2, No. 11 / OPTICAL MATERIALS EXPRESS 1462 17. S. J. Bass, “Silicon and germanium doping of epitaxial gallium arsenide grown by the trimethylgallium-arsine method,” J. Cryst. Growth 47(5-6), 613–618 (1979). 18. C. E. C. Wood, G. Metze, J. Berry, and L. F. Eastman, “Complex free-carrier profile synthesis by ‘atomic-plane’ doping of MBE GaAs,” J. Appl. Phys. 51(1), 383–387 (1980). 19. H. Gossmann, A. M. Vredenberg, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, D. C. Jacobson, T. Boone, and J. M. Poate, “Diffusion of dopants in Band Sb-delta-doped Si films grown by solid-phase epitaxy,” J. Appl. Phys. 74(5), 3150–3155 (1993). 20. G. Scappucci, G. Capellini, W. C. T. Lee, and M. Y. Simmons, “Ultradense phosphorus in germanium deltadoped layers,” Appl. Phys. Lett. 94(16), 162106 (2009). 21. G. Scappucci, G. Capellini, W. M. Klesse, and M. Y. Simmons, “Dual-temperature encapsulation of phosphorus in germanium delta layers toward ultra-shallow junctions,” J. Cryst. Growth 316(1), 81–84 (2011). 22. Y. Cai, R. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, “High phosphorus doped germanium: dopant diffusion and modeling,” J. Appl. Phys. 112(3), 034509 (2012). 23. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999). 24. S.-M. Jang, K. Liao, and R. Reif, “Chemical vapor deposition of epitaxial silicon-germanium from silane and germane. II. In situ boron, arsenic, and phosphorus doping,” J. Electrochem. Soc. 142(10), 3520–3527 (1995). 25. R. Camacho-Aguilera, Z. Han, Y. Cai, J. Bessette, L. Kimerling, and J. Michel, “Band gap narrowing in highly doped Ge,” submitted (2012). 26. R. Olesinski, N. Kanani, and G. Abbaschian, “The Ge−P (germanium-phosphorus) system,” J. Phase Equilibria 6, 262–266 (1985).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High phosphorous doped germanium: Dopant diffusion and modeling

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The in situ n-type doping of Ge thin films epitaxial grown on Si substrates is limited to 1 Â 10 19 cm À3 by the ph...

متن کامل

Materials Science and Design for Germanium Monolithic Light Source on Silicon

Germanium (Ge) is an optically active material with the advantages of Si-CMOS compatibility and monolithic integration. It has great potential to be used as the light emitter for Si photonics. Tensile strain and n-type doping are two key properties in Ge to achieve optical gain. This thesis mainly focuses on: (1) physical understandings of the threshold behavior of Ge-on-Si bulk laser and the t...

متن کامل

Ultra-doped n-type germanium thin films for sensing in the mid-infrared

A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) ...

متن کامل

Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell

Abstract—This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silva...

متن کامل

Synthesis, Characterization, and Application of Zr,Ce-TiO2/SiO2 Nanocomposite Thin Film as Visible-light Active Photocatalyst

A novel Zr,Ce-TiO2/SiO2 nanocomposite thin film was successfully prepared with various amounts of Zr4+ and Ce4+ as codopant ions for self-cleaning applications. A thin film was coated on a tile substrate by dip-coating and porous Zr,Ce-TiO2/SiO2 was obtained after heat treatment for 2 hours at 500 °C. The SEM images an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012