Removal of arsenite from water by synthetic siderite: behaviors and mechanisms.

نویسندگان

  • Huaming Guo
  • Yuan Li
  • Kai Zhao
  • Yan Ren
  • Chao Wei
چکیده

Synthetic siderite has been used as adsorbent for As(III) removal in this study. Effects of contact time, temperature, pH, co-existing anions on As(III) adsorption were intensively investigated. Adsorption mechanisms were also studied using the X-ray absorption technique. Results show that the maximum adsorption capacity is up to 9.98 mg g(-1) at 25°C at a siderite dosage of 2 g L(-1). Adsorption kinetics agrees with the Lagergren pseudo-second order model. Arsenic(III) adsorption can be better described by Langmuir isotherm model for As(III) adsorption at 55°C, indicating that the coverage of the adsorption sites is in the form of monolayer, although Freundlich isotherm yields a better fit to the experimental data at 25, 35 and 45°C. Thermodynamic study indicates that As(III) adsorption on the synthetic siderite is spontaneous and endothermic in nature. The adsorption capacity is enhanced with the increase in reaction temperature. The adsorption is independent on solution pH between 3.0 and 9.6. The presence of NO(3)(-), SO(4)(2-), PO(4)(3-) or SiO(3)(2-) with element concentrations less than 20 mg L(-1) does not have adverse effect on As(III) adsorption. XANES spectra indicate that As mainly occurs as As(V) in the As adsorbed-materials, and the fraction of oxidized As(III) increases with the decrease in As(III) concentration. The formation of Fe hydroxide minerals (such as lepidocrocite and goethite) followed by As(III) oxidation and adsorption is shown to be the main mechanism of As(III) removal by the synthetic siderite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexisting arsenate and arsenite adsorption from water using porous pellet adsorbent: Optimization by response surface methodology

Mesoporous pellet adsorbent developed from mixing at an appropriate ratio of natural clay, iron oxide, iron powder, and rice bran was used to investigate the optimization process of batch adsorption parameters for treating aqueous solution coexisting with arsenate and arsenite. Central composite design under response surface methodology was applied for optimizing and observing both individual a...

متن کامل

Biological Removal of phosphate from Synthetic Wastewater Using Bacterial Consortium

The biological phosphorus removal is a microbial process widely used for removing phosphorus fromwastewater to avoid eutrophication of water bodies. The study was aimed to screen the efficient phosphatereducing isolates and used to remove phosphate from synthetic wastewater using batch scale process. Thethree most efficient phosphate reducers were isolated and screened from eu...

متن کامل

Arsenic removal from water using natural iron mineral-quartz sand columns.

The study has investigated the feasibility of using siderite-coated quartz sand and/or hematite-coated quartz sand columns for removing As from water. Arsenic-spiked tap water and synthetic As solution with As concentrations from 200 to 500 mug/L were used for the experiments. Since three coating methods employed to prepare siderite-coated quartz sand and hematite-coated quartz sand had no sign...

متن کامل

Removal of Methylene Blue from Water by Polyacrylonitrile Co Sodium Methallylsulfonate Copolymer (AN69) and Polysulfone (PSf) Synthetic Membranes

Polyacrylonitrile-co-sodium methallylsulfonate copolymer (AN69) and polysulfone (PSf) synthetic membranes were prepared and used for the removal of methylene blue (MB) from water. Atomic Force Microscopy (AFM), Ionic exchange capacity (IEC), and Swelling ratio (Sr) were employed to determine the membrane characteristics. pH, membrane composition and initial dye concentration were used for t...

متن کامل

Influence of Operating Variables on Performance of Nanofiltration Membrane for Dye Removal from Synthetic Wastewater Using Response Surface Methodology

The textile industry is a water intensive industry that produces a large amount of highly colored wastewater that must be properly treated before disposal or reuse. In the present study, to verify the possibility of reusing textile wastewater with nanofilteration (NF), an attempt was made to treatment of synthetic reactive dye aqueous solution by commercial nanofiltration membrane. Experiments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 186 2-3  شماره 

صفحات  -

تاریخ انتشار 2011