On Estimating Diagnostic Accuracy From Studies With Multiple Raters and Partial Gold Standard Evaluation.

نویسندگان

  • Paul S Albert
  • Lori E Dodd
چکیده

We are often interested in estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous authors have proposed latent modeling approaches for estimating diagnostic error without a gold standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of diagnostic error can be biased when the dependence structure between tests is misspecified. In addition, they showed that choosing between different models for this dependence structure is difficult in most practical situations. While these results caution against using these latent class models, the difficulties of obtaining gold standard verification remain a practical reality. We extend two classes of models to provide a compromise that collects gold standard information on a subset of subjects but incorporates information from both the verified and nonverified subjects during estimation. We examine the robustness of diagnostic error estimation with this approach and show that choosing between competing models is easier in this context. In our analytic work and simulations, we consider situations in which verification is completely at random as well as settings in which the probability of verification depends on the actual test results. We apply our methodological work to a study designed to estimate the diagnostic error of digital radiography for gastric cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contrastive analysis of diagnostic tests evaluation without gold stand-ard: review article

Considering the advancement of medical sciences, diagnostic tests have been developed to distinguish patients from healthy population. Therefore, Determining and evaluation of the diagnostic accuracy tests is of great importance. The accuracy of a test under evaluation is determined through the amount of agreement between its results with the results of the gold standard, and this test accuracy...

متن کامل

Estimating diagnostic accuracy of raters without a gold standard by exploiting a group of experts.

In diagnostic medicine, estimating the diagnostic accuracy of a group of raters or medical tests relative to the gold standard is often the primary goal. When a gold standard is absent, latent class models where the unknown gold standard test is treated as a latent variable are often used. However, these models have been criticized in the literature from both a conceptual and a robustness persp...

متن کامل

Imputation approaches for estimating diagnostic accuracy for multiple tests from partially verified designs.

Interest often focuses on estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Various authors have proposed semilatent class modeling approaches for estimating diagnostic accuracy in this situation. This article presents imputation approaches for this problem. I show how imputation...

متن کامل

A Bayesian Approach to the Assessment of Diagnostic Test Accuracy in the Absence of a Gold Standard

We have developed a Bayesian approach to estimating the sensitivity and specificity of multiple diagnostic tests (or human raters) in the absence of a gold standard. In many situations the responses of diagnostic tests are highly correlated given the presence or absence of a disease, which makes it difficult to estimate the accuracy of each test. In such cases the tests are said to be condition...

متن کامل

Evaluation of diagnostic accuracy in detecting ordered symptom statuses without a gold standard.

Our research is motivated by 2 methodological problems in assessing diagnostic accuracy of traditional Chinese medicine (TCM) doctors in detecting a particular symptom whose true status has an ordinal scale and is unknown-imperfect gold standard bias and ordinal scale symptom status. In this paper, we proposed a nonparametric maximum likelihood method for estimating and comparing the accuracy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 103 481  شماره 

صفحات  -

تاریخ انتشار 2008