Path planning self-learning Algorithm for a dynamic changing environment
نویسندگان
چکیده
Safe and optimal path planning in a cluttered changing environment for agents’ movement is an area of research, which needs further investigations. The existing methods are able to generated secure trajectories, but they are not efficient enough to learn from their mistakes, especially when dynamics of the environment are concerned. This paper presents an advanced version of the Ant-Air algorithm, which can detect the changed scenario and while keeping the lessons learnt from the previously planned safe trajectory, it then generates a safe and optimal path by avoiding collisions with the obstacles. The method presented can learn from the experience and hence improve the already generated trajectories further by using the lessons learned from the experience. The concept developed is applicable in various domains such as path planning for mobile robot, industrial robots, and simulation of part movement in narrow passages.
منابع مشابه
Robot Motion Planning with Neuro-Genetic-Fuzzy Approach in Dynamic Environment
To find an optimal path for robots in an environment that is only partially known and continuously changing is a difficult problem. This paper presents a new method for generating a collision-free near-optimal path for an autonomous mobile robot in a dynamic environment containing moving and static obstacles using neural network and fuzzy logic with genetic algorithm. The mobile robot selects a...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کاملOperation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کاملA Genetic-Algorithm-Based Approach to UAV Path Planning Problem
This paper presents a genetic-algorithm-based approach to the problem of UAV path planning in dynamic environments. Variable-length chromosomes and their genes have been used for encoding the problem. We model the vehicle path as a sequence of speed and heading transitions occurring at discrete times, and this model specifically contains the vehicle dynamic constraints in the generation of tria...
متن کاملBased on A* and Q-Learning Search and Rescue Robot Navigation
For the search and rescue robot navigation in unknown environment, a bionic self-learning algorithm based on A* and Q-Learning is put forward. The algorithm utilizes the Growing Self-organizing Map (GSOM) to build the environment topology cognitive map. The heuristic search A* algorithm is used the global path planning. When the local environment changes, Q-Learning is used the local path plann...
متن کامل