Why does substitution of thymine by 6-ethynylpyridone increase the thermostability of DNA double helices?

نویسندگان

  • Antarip Halder
  • Ayan Datta
  • Dhananjay Bhattacharyya
  • Abhijit Mitra
چکیده

Efficiency of 6-ethynylpyridone (E), a potential thymine (T) analogue, which forms high-fidelity base pairs with adenine (A) and gives rise to stabler DNA duplexes, with stability comparable to those containing canonical cytosine(C):guanine(G) base pairs, has been reported recently. Estimates of the interaction energies, involving geometry optimization at the DFT level (including middle range dispersion interactions) followed by single point energy calculation at MP2 level, in excellent correlation with the experimentally observed trends, show that E binds more strongly and more discriminately with A than T does. Detailed analysis reveals that the increase in base-base interaction arises out of conjugation of acetylenic π electrons with the ring π system of E, which results in not only an extra stabilizing C-H···π interaction in the EA pair, but also a strengthening of the conventional hydrogen bonds. However, the computed base-base interaction energy for the EA pair was found to be much less than that of the canonical CG pair, implying that the difference in the TA versus EA base pairing interaction alone cannot explain the large experimentally observed increase in the thermostability of DNA duplexes, where a TA pair is replaced with an EA pair. Our computations show that the conjugation of acetylenic π electrons with the ring π system also possibly plays a role in increasing the stacking potential of the EA pair, which in turn can explain its marked influence in the enhancement of duplex stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Biology of DNA (6-4) Photoproducts Formed by Ultraviolet Radiation and Interactions with Their Binding Proteins

Exposure to the ultraviolet component of sunlight causes DNA damage, which subsequently leads to mutations, cellular transformation, and cell death. DNA photoproducts with (6-4) pyrimidine-pyrimidone adducts are more mutagenic than cyclobutane pyrimidine dimers. These lesions must be repaired because of the high mutagenic potential of (6-4) photoproducts. We here reviewed the structures of (6-4...

متن کامل

Thioamides in the collagen triple helix.

To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.

متن کامل

A theoretical reasoning on why coordination catalysts supported on mesoporous supports produce HDPE crystalline nanofibers but not iPP crystalline nanofibers

Since 1999, when Takuzo Aida proposed the preparation of high density polyethylene (HDPE) crystalline nanofibers through polymerization of ethylene by a Cp2 TiCl2 /MCM-41 catalyst, many researchers have published various papers on different aspects of the idea. The published researches show that the endeavors to polymerize other types of alpha olefins, especially propylene, to obtain polyolefin...

متن کامل

Stereochemical Trajectories of a Two-Component Regulatory System PmrA/B in a Colistin-Resistant Acinetobacter baumannii Clinical Isolate

Background: There is limited information on the 3D prediction and modeling of the colistin resistance-associated proteins PmrA/B TCS in Acinetobacter baumannii. We aimed to evaluate the stereochemical structure and domain characterization of PmrA/B in an A. baumannii isolate resistant to high-level colistin, using bioinformatics tools. Methods: The species of the isolate and its susceptibility ...

متن کامل

Hydration energy of Adenine, Guanine, Cytosine and Thymine : Monte Carlo simulation

The hydration of biomolecules is vitally important in molecular biology, so in this paper thesolvation energy and radial distribution function of DNA bases have been calculated by theMonte Carlo simulation.The geometries of isolated Adenine, Guanine, Cytosine, and Thyminehave been optimized using 6-31+G(d,p) basis function sets. These geometries then will be used inthe Monte Carlo calculation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 118 24  شماره 

صفحات  -

تاریخ انتشار 2014