An Effective Wideband Spectrum Sensing Method Based on Sparse Signal Reconstruc- Tion for Cognitive Radio Networks
نویسندگان
چکیده
Wideband spectrum sensing is an essential functionality for cognitive radio networks. It enables cognitive radios to detect spectral holes over a wideband channel and to opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. However, most of the work on wideband spectrum sensing presented in the literature employ the Nyquist sampling which requires very high sampling rates and acquisition costs. In this paper, a new wideband spectrum sensing algorithm based on compressed sensing theory is presented. The proposed method gives an effective sparse signal representation method for the wideband spectrum sensing problem. Thus, the presented method can effectively detect all spectral holes by finding the sparse coefficients. At the same time, the signal sampling rate and acquisition costs can be substantially reduced by using the compressive sampling technique. Simulation results testify the effectiveness of the proposed approach even in low signal-to-noise (SNR) cases.
منابع مشابه
Secure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks
Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...
متن کاملWideband Spectrum Sensing based on Sparse Channel State Recovery in Cognitive Radio Networks
Motivated by the compressed sensing sparse channel estimation problem, the complete channel state is sparse under the conditions of low spectral efficiency. Other than traditional method of looking for the perception of spectrum holes, this paper focus on the sparse of occupied sub-channels. Based on compressed sensing technology, a novel cooperative wideband spectrum sensing method is proposed...
متن کاملAnti-sampling-distortion compressive wideband spectrum sensing for Cognitive Radio
Too high sampling rate is the bottleneck to wideband spectrum sensing for cognitive radio in mobile communication. Compressed sensing (CS) is introduced to transfer the sampling burden. The standard sparse signal recovery of CS does not consider the distortion in the analogue-to-information converter (AIC). To mitigate performance degeneration casued by the mismatch in least square distortionle...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملApplication of Compressed Sampling for Spectrum Sensing and Channel Estimation in Wideband Cognitive Radio Networks
In the last few years Compressed Sampling (CS) has been well used in the area of signal processing and image compression. Recently, CS has been earning a great interest in the area of wireless communication networks. CS exploits the sparsity of the signal processed for digital acquisition to reduce the number of measurement, which leads to reductions in the size, power consumption, processing t...
متن کامل