The Degree of Symmetry of Certain Compact Smooth Manifolds II
نویسنده
چکیده
In this paper, we give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain four dimensional fiber bundles by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau. As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP 2 × V , where V is closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology. Mathematics Subject Classification: Primary 57S15; Secondary 53C44.
منابع مشابه
The degree of symmetry of compact smooth manifolds
In this paper, we estimate the degree of symmetry and the semi-simple degree of symmetry of certain fiber bundles by virtue of the rigidity theorem with respect to the harmonic map due to Schoen and Yau. As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of certain product manifolds. In addition, by Albanese map, we estimate the degree of s...
متن کاملMultiple point of self-transverse immesions of certain manifolds
In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کاملLog Mirror Symmetry and Local Mirror Symmetry
We study Mirror Symmetry of log Calabi-Yau surfaces. On one hand, we consider the number of “affine lines” of each degree in P\B, where B is a smooth cubic. On the other hand, we consider coefficients of a certain expansion of a function obtained from the integrals of dx/x ∧ dy/y over 2chains whose boundaries lie on Bφ, where {Bφ} is a family of smooth cubics. Then, for small degrees, they coin...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کامل