Learning Instance Weights in Multi-Instance Learning
نویسنده
چکیده
Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influence that it has on its bag’s class label. This is a more general assumption than most existing approaches use, and thus is more widely applicable. The challenge is to accurately estimate these weights in order to make predictions at the bag level. An existing approach known as MILES is retroactively identified as an algorithm that uses instance weights for MI learning, and is evaluated using a variety of base learners on benchmark problems. New algorithms for learning instance weights for MI learning are also proposed and rigorously evaluated on both artificial and realworld datasets. The new algorithms are shown to achieve better root mean squared error rates than existing approaches on artificial data generated according to the algorithms’ underlying assumptions. Experimental results also demonstrate that the new algorithms are competitive with existing approaches on real-world problems.
منابع مشابه
IRDDS: Instance reduction based on Distance-based decision surface
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...
متن کاملFAMER: Making Multi-Instance Learning Better and Faster
Kernel method is a powerful tool in multi-instance learning. However, many typical kernel methods for multi-instance learning ignore the correspondence information of instances between two bags or co-occurrence information, and result in poor performance. Additionally, most current multiinstance kernels unreasonably assign all instances in each bag an equal weight, which neglects the significan...
متن کاملMulti-Instance Learning with Key Instance Shift
Multi-instance learning (MIL) deals with the tasks where each example is represented by a bag of instances. A bag is positive if it contains at least one positive instance, and negative otherwise. The positive instances are also called key instances. Only bag labels are observed, whereas specific instance labels are not available in MIL. Previous studies typically assume that training and test ...
متن کاملMarginalized Multi-Instance Kernels
Support vector machines (SVM) have been highly successful in many machine learning problems. Recently, it is also used for multi-instance (MI) learning by employing a kernel that is defined directly on the bags. As only the bags (but not the instances) have known labels, this MI kernel implicitly assumes all instances in the bag to be equally important. However, a fundamental property of MI lea...
متن کاملDifferent Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کامل