Osteogenic cell fractions isolated from mouse tongue muscle
نویسندگان
چکیده
The use of stem cells represents a promising approach for the treatment of bone defects. However, successful treatments rely upon the availability of cells that are easily obtained and that appropriately differentiate into osteoblasts. The tongue potentially represents a source of autologous cells for such purposes. In the present study, the ability of stem cell antigen-1 (Sca-1) positive cells derived from tongue muscle to differentiate into osteoblasts was investigated. The tongue muscles were excised from Jcl-ICR mice and tongue muscle-derived Sca-1-positive cells (TDSCs) were isolated from the tongue muscle using a magnetic cell separation system with microbeads. TDSCs were cultured in plastic dishes or gelatin sponges of β-tricalcium phosphate (β-TCP) with bone differentiation-inducing medium. The expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, fibronectin, osteocalcin, osteonectin and osteopontin) was investigated in cultured TDSCs by western blot analysis. The formation of mineralized matrices was examined using alizarin red S and Von Kossa staining. Bone formation was investigated in cultured TDSCs by hematoxylin-eosin staining and immunohistochemistry. In the present study, the expression of Sca-1 in mouse tongue muscle was demonstrated and TDSCs were isolated at high purity. TDSCs differentiated into cells of osteoblast lineage, as demonstrated by the upregulation of osteoblastic marker expression. The formation of mineralized matrices was confirmed by alizarin red S or Von Kossa staining in vitro. Bone formation was observed in the gelatin sponges of β-TCP, which were subsequently implanted under the skin of the backs of nude mice. These results suggested that TDSCs retain their osteogenic differentiation potential and therefore the tongue muscle may be used as a source of stem cells for bone regeneration.
منابع مشابه
Multilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells
Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملتاثیر Chitosan بر ویژگیهای استئوژنیک سلولهای بنیادی مزانشیمال پالپ دندان شیری
Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...
متن کاملMouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo.
Human, rat, and mouse studies have demonstrated the existence of a population of adipose-derived adult stem (ADAS) cells that can undergo multilineage differentiation in vitro. However, it remains unclear whether these cells maintain their multilineage potential in vivo. The aim of this study was to examine the in vitro and in vivo characteristics and behavior of a potential population of murin...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کامل