Estimation of Forest Structural Diversity Using the Spectral and Textural Information Derived from SPOT-5 Satellite Images
نویسندگان
چکیده
Uneven-aged forest management has received increasing attention in the past few years. Compared with even-aged plantations, the complex structure of uneven-aged forests complicates the formulation of management strategies. Forest structural diversity is expected to provide considerable significant information for uneven-aged forest management planning. In the present study, we investigated the potential of using SPOT-5 satellite images for extracting forest structural diversity. Forest stand variables were calculated from the field plots, whereas spectral and textural measures were derived from the corresponding satellite images. We firstly employed Pearson’s correlation analysis to examine the relationship between the forest stand variables and the image-derived measures. Secondly, we performed all possible subsets multiple linear regression to produce models by including the image-derived measures, which showed significant correlations with the forest stand variables, used as independent variables. The produced models were evaluated with the adjusted coefficient of determination (Radj) and the root mean square error (RMSE). Furthermore, a ten-fold cross-validation approach was used to validate the best-fitting models (Radj > 0.5). The results indicated that basal area, stand volume, the Shannon index, Simpson index, Pielou index, standard deviation of DBHs, diameter differentiation index and species intermingling index could be reliably predicted using the spectral or textural measures extracted from SPOT-5 satellite images.
منابع مشابه
SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation
Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...
متن کاملMapping Forest Health Using Spectral and Textural Information Extracted from SPOT-5 Satellite Images
Forest health is an important variable that we need to monitor for forest management decision making. However, forest health is difficult to assess and monitor based merely on forest field surveys. In the present study, we first derived a comprehensive forest health indicator using 15 forest stand attributes extracted from forest inventory plots. Second, Pearson’s correlation analysis was perfo...
متن کاملSpot-5 Multispectral Image for Pine Plantation Structure Mapping
The huge extents of the softwood plantations in Australias national forests (about 1,020,000 hectare in 2009) require continuous silviculture operations. Consequently a reliable and continuous quantification of the plantation structure is needed to sustainably manage them. Remote sensing data is considered as a cost-effective and efficient tool for this task and several remotely sensed dataset...
متن کاملModeling forest biomass using Very-High-Resolution data - Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images
We used spectral, textural and photogrammetric information from very-high resolution (VHR) stereo satellite data (Pléiades and WorldView-2) to estimate forest biomass across two test sites located in Chile and Germany. We compared Random Forest model performances of different predictor sets (spectral, textural, and photogrammetric), forest inventory designs and filter sizes (texture information...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016