Posterior Moments of the Cauchy Distribution

نویسنده

  • DAVID R. WOLF
چکیده

The posterior moments of parameters specifying distributions are minimum mean square Bayesian estimators for the corresponding moments of those parameters, and as such are ubiquitous in the Bayesian approach to statistical inference of distributions. The Cauchy distribution is most notable for its wide tails, decided absence of high-order moments, and non-existence of less-than-data dimension suucient statistics. Thus it vastly diiers qualitatively from the Gaussian distribution, where tails are small, moments of all orders exist, and dimension-two suucient statistics always exist. In this paper the posterior moments of the position parameter of the Cauchy distribution are found in closed form. (Estimating the other parameter, the width or distance parameter of the Cauchy is done using the same mathematics.) The interplay between the amount of data acquired for the estimation of the position parameter and the existence of higher order moments of the inferred posterior distribution for the postition parameter is made explicit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution

Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...

متن کامل

On the half-Cauchy prior for a global scale parameter

This paper argues that the half-Cauchy distribution should replace the inverseGamma distribution as a default prior for a top-level scale parameter in Bayesian hierarchical models, at least for cases where a proper prior is necessary. Our arguments involve a blend of Bayesian and frequentist reasoning, and are intended to complement the original case made by Gelman (2006) in support of the fold...

متن کامل

The Beta - Half - Cauchy Distribution

On the basis of the half-Cauchy distribution, we propose the called beta-half-Cauchy distribution for modeling lifetime data. Various explicit expressions for its moments, generating and quantile functions, mean deviations, and density function of the order statistics and their moments are provided. The parameters of the new model are estimated by maximum likelihood, and the observed informatio...

متن کامل

A Two-parameter Generalized Skew-Cauchy Distribution

In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...

متن کامل

Estimators for the Cauchy Distribution

We discuss the properties of various estimators of the central position of the Cauchy distribution. The performance of these estimators is evaluated for a set of simulated experiments. Estimators based on the maximum and mean the posterior density function are empirically found to be well behaved when more than two measurements are available. On the contrary, because of the infinite variance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998