On Fan-Crossing Graphs

نویسنده

  • Franz-Josef Brandenburg
چکیده

A fan is a set of edges with a single common endpoint. A graph is fan-crossing if it admits a drawing in the plane so that each edge is crossed by edges of a fan. It is fan-planar if, in addition, the common endpoint is on the same side of the crossed edge. A graph is adjacencycrossing if it admits a drawing so that crossing edges are adjacent. Then it excludes independent crossings which are crossings by edges with no common endpoint. Adjacency-crossing allows triangle-crossings in which an edge crosses the edges of a triangle, which is excluded at fan-crossing graphs. We show that every adjacency-crossing graph is fan-crossing. Thus trianglecrossings can be avoided. On the other hand, there are fan-crossing graphs that are not fan-planar, whereas for every fan-crossing graph there is a fan-planar graph on the same set of vertices and with the same number of edges. Hence, fan-crossing and fan-planar graphs are different, but they do not differ in their density with at most 5n − 10 edges for graphs of size n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path-Additions of Graphs

Path-addition is an operation that takes a graph and adds an internally vertex-disjoint path between two vertices together with a set of supplementary edges. Path-additions are just the opposite of taking minors. We show that some classes of graphs are closed under path-addition, including non-planar, right angle crossing, fan-crossing free, quasi-planar, (aligned) bar 1-visibility, and interva...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus

In a fan-planar drawing of a graph there is no edge that crosses two other independent edges. We study 2-layer fan-planar drawings, i.e., fan-planar drawings such that the vertices are assigned to two distinct horizontal layers and edges are straight-line segments that connect vertices of different layers. We characterize 2-layer fan-planar drawable graphs and describe a linear-time testing and...

متن کامل

Beyond-Planarity: Density Results for Bipartite Graphs

Beyond-planarity focuses on the study of geometric and topological graphs that are in some sense nearly-planar. Here, planarity is relaxed by allowing edge crossings, but only with respect to some local forbidden crossing configurations. Early research dates back to the 1960s (e.g., Avital and Hanani [14]) for extremal problems on geometric graphs, but is also related to graph drawing problems ...

متن کامل

METAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM

This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.06840  شماره 

صفحات  -

تاریخ انتشار 2017