Symbolic derivation of Runge-Kutta order conditions

نویسندگان

  • Ioannis Th. Famelis
  • S. N. Papakostas
  • Charalampos Tsitouras
چکیده

Tree theory, partitions of integer numbers, combinatorial mathematics and computer algebra are the basis for the construction of a powerful and efficient symbolic package for the derivation of Runge Kutta order conditions and principal truncation error terms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge - Kutta Methods , Trees , and Mathematica

This paper presents a simple and elementary proof of Butcher's theorem on the order conditions of Runge-Kutta methods. It is based on a recursive definition of rooted trees and avoids combinatorial tools such as labelings andFà a di Bruno's formula. This strictly recursive approach can easily and elegantly be implemented using modern computer algebra systems like Mathematica for automatically g...

متن کامل

Order conditions for general linear methods

We describe the derivation of order conditions, without restrictions on stage order, for general linear methods for ordinary differential equations. This derivation is based on the extension of Albrecht approach proposed in the context of Runge-Kutta and composite and linear cyclic methods. This approach was generalized by Jackiewicz and Tracogna to two-step Runge-Kutta methods, by Jackiewicz a...

متن کامل

Power System Simulation Using the Differential Transformation Method

This paper proposes a new semi-analytical approach for online time-domain power system simulation. The approach applies the differential transformation method (DTM) to the power system differential equation model to offline derive a semi-analytical solution (SAS) having symbolic variables about time, the initial state and system conditions. When simulation is online needed for a contingency und...

متن کامل

Evolutionary Design of Numerical Methods: Generating Finite Difference and Integration Schemes by Differential Evolution

Classical and new numerical schemes are generated using evolutionary computing. Differential Evolution is used to find the coefficients of finite difference approximations of function derivatives, and of single and multi‐ step integration methods. The coefficients are reverse engineered based on samples from a target function and its derivative used for training. The Runge‐Kutta schemes are tra...

متن کامل

Construction of Symplectic Runge-KuttaMethods for Stochastic Hamiltonian Systems

We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise, special separable Hamiltonians and multiple additive noise, respectively, are considered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are investigated, and the corresponding conditions for SRK methods to preserve th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2004