Tantalate-based Perovskite for Solar Energy Applications

نویسندگان

  • Yiguo Su
  • Junyu Lang
  • Chunfang Du
  • Xiaojing Wang
چکیده

To realize a sustainable society in the near future, the development of clean, renewable, cheap and sustainable resources and the remediation of environmental pollutions using solar energy as the driving force would be important. During the past few decades, plen‐ ty of efforts have been focused on this area to develop solar light active materials to meet the increased energy and environmental crisis. Owning to the unique perovskite-type structure, tantalate-based semiconductors with unable chemical composition show high activities toward the conversion of solar radiation into chemical energy. Moreover, vari‐ ous engineering strategies, including crystal structure engineering, electronic structure engineering, surface/interface engineering, co-catalyst engineering and so on, have been developed in order to modulate the charge separation and transfer efficiency, optical ab‐ sorption, band gap position and photochemical and photophysical stability, which would open a realm of new possibilities for exploring novel materials for solar energy applica‐ tions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells

In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...

متن کامل

Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides

In recent years, hybrid organic–inorganic perovskite light absorbers have attracted much attention in the field of solar cells due to their optoelectronic characteristics that enable high power conversion efficiencies. Perovskite-based solar cells’ efficiency has increased dramatically from 3.8% to more than 20% in just a few years, making them a promising low-cost alternative for photovoltaic ...

متن کامل

افزایش پایداری سلول‌های خورشیدی با استفاده از لایه‌های جاذب پروسکایتی CH3NH3PbI3 آلاییده با برم

The CH3NH3PbI3 is one of the most widely used and famous lead halide perovskite absorber layer for using in perovskite solar cells. One of the ways to deal with the instability problem of this perovskite structure in environmental condition is bromide doping in this composition. In this work, the structural and optical properties of the bromide doped CH3NH3PbI3 absorber layers were studied as w...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Enhancement of Perovskite Solar Cells by Plasmonic Nanoparticles

Synthetic perovskites with photovoltaic properties open a new era in solar photovoltaics. Due to high optical absorption perovskite-based thin-film solar cells are usually considered as fully absorbing solar radiation on condition of ideal blooming. However, it is not really so. The analysis of the literature data has shown that the absorbance of all photovoltaic pervoskites has the spectral ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017